cgsvj1.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEcgsvj1.f
SYNOPSIS
Functions/Subroutinessubroutine cgsvj1 (JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV, EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO)
CGSVJ1 pre-processor for the routine cgesvj, applies Jacobi rotations targeting only particular pivots.
Function/Subroutine Documentation
subroutine cgsvj1 (character*1 JOBV, integer M, integer N, integer N1, complex, dimension( lda, * ) A, integer LDA, complex, dimension( n ) D, real, dimension( n ) SVA, integer MV, complex, dimension( ldv, * ) V, integer LDV, real EPS, real SFMIN, real TOL, integer NSWEEP, complex, dimension( lwork ) WORK, integer LWORK, integer INFO)CGSVJ1 pre-processor for the routine cgesvj, applies Jacobi rotations targeting only particular pivots. Purpose: CGSVJ1 is called from CGESVJ as a pre-processor and that is its main
purpose. It applies Jacobi rotations in the same way as CGESVJ does, but
it targets only particular pivots and it does not check convergence
(stopping criterion). Few tunning parameters (marked by [TP]) are
available for the implementer.
Further Details
~~~~~~~~~~~~~~~
CGSVJ1 applies few sweeps of Jacobi rotations in the column space of
the input M-by-N matrix A. The pivot pairs are taken from the (1,2)
off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The
block-entries (tiles) of the (1,2) off-diagonal block are marked by the
[x]'s in the following scheme:
| * * * [x] [x] [x]|
| * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.
| * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.
|[x] [x] [x] * * * |
|[x] [x] [x] * * * |
|[x] [x] [x] * * * |
In terms of the columns of A, the first N1 columns are rotated 'against'
the remaining N-N1 columns, trying to increase the angle between the
corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter.
The number of sweeps is given in NSWEEP and the orthogonality threshold
is given in TOL.Parameters: JOBV JOBV is CHARACTER*1
Specifies whether the output from this procedure is used
to compute the matrix V:
= 'V': the product of the Jacobi rotations is accumulated
by postmulyiplying the N-by-N array V.
(See the description of V.)
= 'A': the product of the Jacobi rotations is accumulated
by postmulyiplying the MV-by-N array V.
(See the descriptions of MV and V.)
= 'N': the Jacobi rotations are not accumulated.
M M is INTEGER
The number of rows of the input matrix A. M >= 0.
N N is INTEGER
The number of columns of the input matrix A.
M >= N >= 0.
N1 N1 is INTEGER
N1 specifies the 2 x 2 block partition, the first N1 columns are
rotated 'against' the remaining N-N1 columns of A.
A A is COMPLEX array, dimension (LDA,N)
On entry, M-by-N matrix A, such that A*diag(D) represents
the input matrix.
On exit,
A_onexit * D_onexit represents the input matrix A*diag(D)
post-multiplied by a sequence of Jacobi rotations, where the
rotation threshold and the total number of sweeps are given in
TOL and NSWEEP, respectively.
(See the descriptions of N1, D, TOL and NSWEEP.)
LDA LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D D is COMPLEX array, dimension (N)
The array D accumulates the scaling factors from the fast scaled
Jacobi rotations.
On entry, A*diag(D) represents the input matrix.
On exit, A_onexit*diag(D_onexit) represents the input matrix
post-multiplied by a sequence of Jacobi rotations, where the
rotation threshold and the total number of sweeps are given in
TOL and NSWEEP, respectively.
(See the descriptions of N1, A, TOL and NSWEEP.)
SVA SVA is REAL array, dimension (N)
On entry, SVA contains the Euclidean norms of the columns of
the matrix A*diag(D).
On exit, SVA contains the Euclidean norms of the columns of
the matrix onexit*diag(D_onexit).
MV MV is INTEGER
If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
sequence of Jacobi rotations.
If JOBV = 'N', then MV is not referenced.
V V is COMPLEX array, dimension (LDV,N)
If JOBV .EQ. 'V' then N rows of V are post-multipled by a
sequence of Jacobi rotations.
If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
sequence of Jacobi rotations.
If JOBV = 'N', then V is not referenced.
LDV LDV is INTEGER
The leading dimension of the array V, LDV >= 1.
If JOBV = 'V', LDV .GE. N.
If JOBV = 'A', LDV .GE. MV.
EPS EPS is REAL
EPS = SLAMCH('Epsilon')
SFMIN SFMIN is REAL
SFMIN = SLAMCH('Safe Minimum')
TOL TOL is REAL
TOL is the threshold for Jacobi rotations. For a pair
A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
NSWEEP NSWEEP is INTEGER
NSWEEP is the number of sweeps of Jacobi rotations to be
performed.
WORK WORK is COMPLEX array, dimension (LWORK)
LWORK LWORK is INTEGER
LWORK is the dimension of WORK. LWORK .GE. M.
INFO INFO is INTEGER
= 0 : successful exit.
< 0 : if INFO = -i, then the i-th argument had an illegal valueAuthor: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: June 2016 Contributor: Zlatko Drmac (Zagreb, Croatia) Definition at line 238 of file cgsvj1.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 22,598 byte
man-cgsvj1.3Build : 2024-12-05, 20:55 :
Visitor Screen : x
Visitor Counter ( page / site ) : 3 / 182,589
Visitor ID : :
Visitor IP : 18.218.123.194 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 10 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.