chbgvx.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK

NAMEchbgvx.f

SYNOPSIS

Functions/Subroutinessubroutine chbgvx (JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO)
CHBGVX

Function/Subroutine Documentation

subroutine chbgvx (character JOBZ, character RANGE, character UPLO, integer N, integer KA, integer KB, complex, dimension( ldab, * ) AB, integer LDAB, complex, dimension( ldbb, * ) BB, integer LDBB, complex, dimension( ldq, * ) Q, integer LDQ, real VL, real VU, integer IL, integer IU, real ABSTOL, integer M, real, dimension( * ) W, complex, dimension( ldz, * ) Z, integer LDZ, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer, dimension( * ) IFAIL, integer INFO)CHBGVX Purpose: CHBGVX computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.Parameters: JOBZ JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors.
RANGE
RANGE is CHARACTER*1 = 'A': all eigenvalues will be found; = 'V': all eigenvalues in the half-open interval (VL,VU] will be found; = 'I': the IL-th through IU-th eigenvalues will be found.
UPLO
UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored.
N
N is INTEGER The order of the matrices A and B. N >= 0.
KA
KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB
KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0.
AB
AB is COMPLEX array, dimension (LDAB, N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed.
LDAB
LDAB is INTEGER The leading dimension of the array AB. LDAB >= KA+1.
BB
BB is COMPLEX array, dimension (LDBB, N) On entry, the upper or lower triangle of the Hermitian band matrix B, stored in the first kb+1 rows of the array. The j-th column of B is stored in the j-th column of the array BB as follows: if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**H*S, as returned by CPBSTF.
LDBB
LDBB is INTEGER The leading dimension of the array BB. LDBB >= KB+1.
Q
Q is COMPLEX array, dimension (LDQ, N) If JOBZ = 'V', the n-by-n matrix used in the reduction of A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, and consequently C to tridiagonal form. If JOBZ = 'N', the array Q is not referenced.
LDQ
LDQ is INTEGER The leading dimension of the array Q. If JOBZ = 'N', LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N).
VL
VL is REAL If RANGE='V', the lower bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.
VU
VU is REAL If RANGE='V', the upper bound of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'.
IL
IL is INTEGER If RANGE='I', the index of the smallest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'.
IU
IU is INTEGER If RANGE='I', the index of the largest eigenvalue to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'.
ABSTOL
ABSTOL is REAL The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( |a|,|b| ) , where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing AP to tridiagonal form. Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*SLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*SLAMCH('S').
M
M is INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W
W is REAL array, dimension (N) If INFO = 0, the eigenvalues in ascending order.
Z
Z is COMPLEX array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the i-th column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so that Z**H*B*Z = I. If JOBZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= N.
WORK
WORK is COMPLEX array, dimension (N)
RWORK
RWORK is REAL array, dimension (7*N)
IWORK
IWORK is INTEGER array, dimension (5*N)
IFAIL
IFAIL is INTEGER array, dimension (N) If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvectors that failed to converge. If JOBZ = 'N', then IFAIL is not referenced.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is: <= N: then i eigenvectors failed to converge. Their indices are stored in array IFAIL. > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF returned INFO = i: B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.Author: Univ​. of Tennessee Univ​. of California Berkeley Univ​. of Colorado Denver NAG Ltd​. Date: June 2016 Contributors: Mark Fahey, Department of Mathematics, Univ​. of Kentucky, USA Definition at line 302 of file chbgvx​.f​.

AuthorGenerated automatically by Doxygen for LAPACK from the source code​.
0
Johanes Gumabo
Data Size   :   28,237 byte
man-chbgvx.f.3Build   :   2024-12-29, 07:25   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   2 / 262,009
Visitor ID   :     :  
Visitor IP   :   18.219.248.129   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.