chetrf_rook.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEchetrf_rook.f
SYNOPSIS
Functions/Subroutinessubroutine chetrf_rook (UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method (blocked algorithm, calling Level 3 BLAS).
Function/Subroutine Documentation
subroutine chetrf_rook (character UPLO, integer N, complex, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, complex, dimension( * ) WORK, integer LWORK, integer INFO)CHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ('rook') diagonal pivoting method (blocked algorithm, calling Level 3 BLAS). Purpose: CHETRF_ROOK computes the factorization of a comlex Hermitian matrix A
using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
The form of the factorization is
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is Hermitian and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
This is the blocked version of the algorithm, calling Level 3 BLAS.Parameters: UPLO UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N N is INTEGER
The order of the matrix A. N >= 0.
A A is COMPLEX array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L (see below for further details).
LDA LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U':
Only the last KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k-1 and -IPIV(k-1) were inerchaged,
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
If UPLO = 'L':
Only the first KB elements of IPIV are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k)
were interchanged and D(k,k) is a 1-by-1 diagonal block.
If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
columns k and -IPIV(k) were interchanged and rows and
columns k+1 and -IPIV(k+1) were inerchaged,
D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
WORK WORK is COMPLEX array, dimension (MAX(1,LWORK)).
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK LWORK is INTEGER
The length of WORK. LWORK >=1. For best performance
LWORK >= N*NB, where NB is the block size returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: June 2016 Further Details: If UPLO = 'U', then A = U*D*U**T, where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L**T, where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).Contributors: June 2016, Igor Kozachenko,
Computer Science Division,
University of California, Berkeley
September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of ManchesterDefinition at line 214 of file chetrf_rook.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 21,104 byte
man-chetrf_rook.3Build : 2024-12-05, 20:55 :
Visitor Screen : x
Visitor Counter ( page / site ) : 2 / 185,012
Visitor ID : :
Visitor IP : 3.133.153.110 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.