cposvx.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEcposvx.f
SYNOPSIS
Functions/Subroutinessubroutine cposvx (FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
CPOSVX computes the solution to system of linear equations A * X = B for PO matrices
Function/Subroutine Documentation
subroutine cposvx (character FACT, character UPLO, integer N, integer NRHS, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldaf, * ) AF, integer LDAF, character EQUED, real, dimension( * ) S, complex, dimension( ldb, * ) B, integer LDB, complex, dimension( ldx, * ) X, integer LDX, real RCOND, real, dimension( * ) FERR, real, dimension( * ) BERR, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer INFO) CPOSVX computes the solution to system of linear equations A * X = B for PO matrices Purpose: CPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to
compute the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian positive definite matrix and X and B
are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.Description: The following steps are performed:
1. If FACT = 'E', real scaling factors are computed to equilibrate
the system:
diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B
Whether or not the system will be equilibrated depends on the
scaling of the matrix A, but if equilibration is used, A is
overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
factor the matrix A (after equilibration if FACT = 'E') as
A = U**H* U, if UPLO = 'U', or
A = L * L**H, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix.
3. If the leading i-by-i principal minor is not positive definite,
then the routine returns with INFO = i. Otherwise, the factored
form of A is used to estimate the condition number of the matrix
A. If the reciprocal of the condition number is less than machine
precision, INFO = N+1 is returned as a warning, but the routine
still goes on to solve for X and compute error bounds as
described below.
4. The system of equations is solved for X using the factored form
of A.
5. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.
6. If equilibration was used, the matrix X is premultiplied by
diag(S) so that it solves the original system before
equilibration.Parameters: FACT FACT is CHARACTER*1
Specifies whether or not the factored form of the matrix A is
supplied on entry, and if not, whether the matrix A should be
equilibrated before it is factored.
= 'F': On entry, AF contains the factored form of A.
If EQUED = 'Y', the matrix A has been equilibrated
with scaling factors given by S. A and AF will not
be modified.
= 'N': The matrix A will be copied to AF and factored.
= 'E': The matrix A will be equilibrated if necessary, then
copied to AF and factored.
UPLO UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
A A is COMPLEX array, dimension (LDA,N)
On entry, the Hermitian matrix A, except if FACT = 'F' and
EQUED = 'Y', then A must contain the equilibrated matrix
diag(S)*A*diag(S). If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced. A is not modified if
FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit.
On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
diag(S)*A*diag(S).
LDA LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
AF AF is COMPLEX array, dimension (LDAF,N)
If FACT = 'F', then AF is an input argument and on entry
contains the triangular factor U or L from the Cholesky
factorization A = U**H*U or A = L*L**H, in the same storage
format as A. If EQUED .ne. 'N', then AF is the factored form
of the equilibrated matrix diag(S)*A*diag(S).
If FACT = 'N', then AF is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**H*U or A = L*L**H of the original
matrix A.
If FACT = 'E', then AF is an output argument and on exit
returns the triangular factor U or L from the Cholesky
factorization A = U**H*U or A = L*L**H of the equilibrated
matrix A (see the description of A for the form of the
equilibrated matrix).
LDAF LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
EQUED EQUED is CHARACTER*1
Specifies the form of equilibration that was done.
= 'N': No equilibration (always true if FACT = 'N').
= 'Y': Equilibration was done, i.e., A has been replaced by
diag(S) * A * diag(S).
EQUED is an input argument if FACT = 'F'; otherwise, it is an
output argument.
S S is REAL array, dimension (N)
The scale factors for A; not accessed if EQUED = 'N'. S is
an input argument if FACT = 'F'; otherwise, S is an output
argument. If FACT = 'F' and EQUED = 'Y', each element of S
must be positive.
B B is COMPLEX array, dimension (LDB,NRHS)
On entry, the N-by-NRHS righthand side matrix B.
On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y',
B is overwritten by diag(S) * B.
LDB LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X X is COMPLEX array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to
the original system of equations. Note that if EQUED = 'Y',
A and B are modified on exit, and the solution to the
equilibrated system is inv(diag(S))*X.
LDX LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND RCOND is REAL
The estimate of the reciprocal condition number of the matrix
A after equilibration (if done). If RCOND is less than the
machine precision (in particular, if RCOND = 0), the matrix
is singular to working precision. This condition is
indicated by a return code of INFO > 0.
FERR FERR is REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK WORK is COMPLEX array, dimension (2*N)
RWORK RWORK is REAL array, dimension (N)
INFO INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: the leading minor of order i of A is
not positive definite, so the factorization
could not be completed, and the solution has not
been computed. RCOND = 0 is returned.
= N+1: U is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: April 2012 Definition at line 308 of file cposvx.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 28,460 byte
man-cposvx.f.3Build : 2024-12-05, 20:55 :
Visitor Screen : x
Visitor Counter ( page / site ) : 3 / 191,153
Visitor ID : :
Visitor IP : 3.145.105.85 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.