CPTRFS - Online Linux Manual PageSection : 1
Updated : November 2008
Source : LAPACK routine (version 3.2)
Note : LAPACK routine (version 3.2)
NAMECPTRFS - improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution
SYNOPSISSUBROUTINE CPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) CHARACTER UPLO INTEGER INFO, LDB, LDX, N, NRHS REAL BERR( * ), D( * ), DF( * ), FERR( * ), RWORK( * ) COMPLEX B( LDB, * ), E( * ), EF( * ), WORK( * ), X( LDX, * )
PURPOSECPTRFS improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian positive definite and tridiagonal, and provides error bounds and backward error estimates for the solution.
ARGUMENTSUPLO (input) CHARACTER*1 Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix A is stored and the form of the factorization:
= 'U': E is the superdiagonal of A, and A = U**H*D*U;
= 'L': E is the subdiagonal of A, and A = L*D*L**H. (The two forms are equivalent if A is real.) N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. D (input) REAL array, dimension (N) The n real diagonal elements of the tridiagonal matrix A. E (input) COMPLEX array, dimension (N-1) The (n-1) off-diagonal elements of the tridiagonal matrix A (see UPLO). DF (input) REAL array, dimension (N) The n diagonal elements of the diagonal matrix D from the factorization computed by CPTTRF. EF (input) COMPLEX array, dimension (N-1) The (n-1) off-diagonal elements of the unit bidiagonal factor U or L from the factorization computed by CPTTRF (see UPLO). B (input) COMPLEX array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input/output) COMPLEX array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by CPTTRS. On exit, the improved solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) REAL array, dimension (NRHS) The forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). BERR (output) REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). WORK (workspace) COMPLEX array, dimension (N) RWORK (workspace) REAL array, dimension (N) INFO (output) INTEGER = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
PARAMETERSITMAX is the maximum number of steps of iterative refinement. 0
Johanes Gumabo
Data Size : 11,718 byte
man-cptrfs.lBuild : 2024-12-05, 20:55 :
Visitor Screen : x
Visitor Counter ( page / site ) : 2 / 190,543
Visitor ID : :
Visitor IP : 18.119.248.48 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.