cspsvx.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEcspsvx.f
SYNOPSIS
Functions/Subroutinessubroutine cspsvx (FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
CSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices
Function/Subroutine Documentation
subroutine cspsvx (character FACT, character UPLO, integer N, integer NRHS, complex, dimension( * ) AP, complex, dimension( * ) AFP, integer, dimension( * ) IPIV, complex, dimension( ldb, * ) B, integer LDB, complex, dimension( ldx, * ) X, integer LDX, real RCOND, real, dimension( * ) FERR, real, dimension( * ) BERR, complex, dimension( * ) WORK, real, dimension( * ) RWORK, integer INFO) CSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices Purpose: CSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
A = L*D*L**T to compute the solution to a complex system of linear
equations A * X = B, where A is an N-by-N symmetric matrix stored
in packed format and X and B are N-by-NRHS matrices.
Error bounds on the solution and a condition estimate are also
provided.Description: The following steps are performed:
1. If FACT = 'N', the diagonal pivoting method is used to factor A as
A = U * D * U**T, if UPLO = 'U', or
A = L * D * L**T, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.
2. If some D(i,i)=0, so that D is exactly singular, then the routine
returns with INFO = i. Otherwise, the factored form of A is used
to estimate the condition number of the matrix A. If the
reciprocal of the condition number is less than machine precision,
INFO = N+1 is returned as a warning, but the routine still goes on
to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form
of A.
4. Iterative refinement is applied to improve the computed solution
matrix and calculate error bounds and backward error estimates
for it.Parameters: FACT FACT is CHARACTER*1
Specifies whether or not the factored form of A has been
supplied on entry.
= 'F': On entry, AFP and IPIV contain the factored form
of A. AP, AFP and IPIV will not be modified.
= 'N': The matrix A will be copied to AFP and factored.
UPLO UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
AP AP is COMPLEX array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
AFP AFP is COMPLEX array, dimension (N*(N+1)/2)
If FACT = 'F', then AFP is an input argument and on entry
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by CSPTRF, stored as
a packed triangular matrix in the same storage format as A.
If FACT = 'N', then AFP is an output argument and on exit
contains the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**T or A = L*D*L**T as computed by CSPTRF, stored as
a packed triangular matrix in the same storage format as A.
IPIV IPIV is INTEGER array, dimension (N)
If FACT = 'F', then IPIV is an input argument and on entry
contains details of the interchanges and the block structure
of D, as determined by CSPTRF.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
If FACT = 'N', then IPIV is an output argument and on exit
contains details of the interchanges and the block structure
of D, as determined by CSPTRF.
B B is COMPLEX array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X X is COMPLEX array, dimension (LDX,NRHS)
If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
LDX LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
RCOND RCOND is REAL
The estimate of the reciprocal condition number of the matrix
A. If RCOND is less than the machine precision (in
particular, if RCOND = 0), the matrix is singular to working
precision. This condition is indicated by a return code of
INFO > 0.
FERR FERR is REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
BERR BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
WORK WORK is COMPLEX array, dimension (2*N)
RWORK RWORK is REAL array, dimension (N)
INFO INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= N: D(i,i) is exactly zero. The factorization
has been completed but the factor D is exactly
singular, so the solution and error bounds could
not be computed. RCOND = 0 is returned.
= N+1: D is nonsingular, but RCOND is less than machine
precision, meaning that the matrix is singular
to working precision. Nevertheless, the
solution and error bounds are computed because
there are a number of situations where the
computed solution can be more accurate than the
value of RCOND would suggest.Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: April 2012 Further Details: The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]Definition at line 279 of file cspsvx.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 25,826 byte
man-cspsvx.3Build : 2024-12-05, 20:55 :
Visitor Screen : x
Visitor Counter ( page / site ) : 2 / 185,008
Visitor ID : :
Visitor IP : 3.139.86.58 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.