CUNMRQ - Online Linux Manual PageSection : 1
Updated : November 2008
Source : LAPACK routine (version 3.2)
Note : LAPACK routine (version 3.2)

NAMECUNMRQ - overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSISSUBROUTINE CUNMRQ(  SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )  CHARACTER SIDE, TRANS  INTEGER INFO, K, LDA, LDC, LWORK, M, N  COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )

PURPOSECUNMRQ overwrites the general complex M-by-N matrix C with TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product of k elementary reflectors

      Q = H(1)' H(2)' . . . H(k)'
as returned by CGERQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.

ARGUMENTSSIDE (input) CHARACTER*1  = 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.
TRANS (input) CHARACTER*1  
= 'N': No transpose, apply Q;
= 'C': Transpose, apply Q**H.
M (input) INTEGER  The number of rows of the matrix C. M >= 0. N (input) INTEGER  The number of columns of the matrix C. N >= 0. K (input) INTEGER  The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. A (input) COMPLEX array, dimension  (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGERQF in the last k rows of its array argument A. A is modified by the routine but restored on exit. LDA (input) INTEGER  The leading dimension of the array A. LDA >= max(1,K). TAU (input) COMPLEX array, dimension (K)  TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGERQF. C (input/output) COMPLEX array, dimension (LDC,N)  On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. LDC (input) INTEGER  The leading dimension of the array C. LDC >= max(1,M). WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))  On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER  The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER  = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
0
Johanes Gumabo
Data Size   :   9,832 byte
man-cunmrq.lBuild   :   2024-12-05, 20:55   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   2 / 236,826
Visitor ID   :     :  
Visitor IP   :   18.116.52.29   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.