dgelsd.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK

NAMEdgelsd.f

SYNOPSIS

Functions/Subroutinessubroutine dgelsd (M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, IWORK, INFO)
DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices

Function/Subroutine Documentation

subroutine dgelsd (integer M, integer N, integer NRHS, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( ldb, * ) B, integer LDB, double precision, dimension( * ) S, double precision RCOND, integer RANK, double precision, dimension( * ) WORK, integer LWORK, integer, dimension( * ) IWORK, integer INFO) DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices Purpose: DGELSD computes the minimum-norm solution to a real linear least squares problem: minimize 2-norm(| b - A*x |) using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The problem is solved in three steps: (1) Reduce the coefficient matrix A to bidiagonal form with Householder transformations, reducing the original problem into a "bidiagonal least squares problem" (BLS) (2) Solve the BLS using a divide and conquer approach. (3) Apply back all the Householder transformations to solve the original least squares problem. The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.Parameters: M M is INTEGER The number of rows of A. M >= 0.
N
N is INTEGER The number of columns of A. N >= 0.
NRHS
NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A has been destroyed.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS) On entry, the M-by-NRHS right hand side matrix B. On exit, B is overwritten by the N-by-NRHS solution matrix X. If m >= n and RANK = n, the residual sum-of-squares for the solution in the i-th column is given by the sum of squares of elements n+1:m in that column.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,max(M,N)).
S
S is DOUBLE PRECISION array, dimension (min(M,N)) The singular values of A in decreasing order. The condition number of A in the 2-norm = S(1)/S(min(m,n)).
RCOND
RCOND is DOUBLE PRECISION RCOND is used to determine the effective rank of A. Singular values S(i) <= RCOND*S(1) are treated as zero. If RCOND < 0, machine precision is used instead.
RANK
RANK is INTEGER The effective rank of A, i.e., the number of singular values which are greater than RCOND*S(1).
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. LWORK must be at least 1. The exact minimum amount of workspace needed depends on M, N and NRHS. As long as LWORK is at least 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2, if M is greater than or equal to N or 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2, if M is less than N, the code will execute correctly. SMLSIZ is returned by ILAENV and is equal to the maximum size of the subproblems at the bottom of the computation tree (usually about 25), and NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) For good performance, LWORK should generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK)) LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN), where MINMN = MIN( M,N ). On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: the algorithm for computing the SVD failed to converge; if INFO = i, i off-diagonal elements of an intermediate bidiagonal form did not converge to zero.Author: Univ​. of Tennessee Univ​. of California Berkeley Univ​. of Colorado Denver NAG Ltd​. Date: June 2017 Contributors: Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA

 Osni Marques, LBNL/NERSC, USA
Definition at line 211 of file dgelsd​.f​.

AuthorGenerated automatically by Doxygen for LAPACK from the source code​.
0
Johanes Gumabo
Data Size   :   19,613 byte
man-dgelsd.f.3Build   :   2024-12-29, 07:25   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   2 / 259,812
Visitor ID   :     :  
Visitor IP   :   18.224.54.118   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.