dlamtsqr.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK

NAMEdlamtsqr.f

SYNOPSIS

Functions/Subroutinessubroutine dlamtsqr (SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, LDT, C, LDC, WORK, LWORK, INFO)

Function/Subroutine Documentation

subroutine dlamtsqr (character SIDE, character TRANS, integer M, integer N, integer K, integer MB, integer NB, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( ldt, * ) T, integer LDT, double precision, dimension(ldc, * ) C, integer LDC, double precision, dimension( * ) WORK, integer LWORK, integer INFO)Purpose: DLAMTSQR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T where Q is a real orthogonal matrix defined as the product of blocked elementary reflectors computed by tall skinny QR factorization (DLATSQR) Parameters: SIDE SIDE is CHARACTER*1 = 'L': apply Q or Q**T from the Left; = 'R': apply Q or Q**T from the Right.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'T': Transpose, apply Q**T.
M
M is INTEGER The number of rows of the matrix A. M >=0.
N
N is INTEGER The number of columns of the matrix C. M >= N >= 0.
K
K is INTEGER The number of elementary reflectors whose product defines the matrix Q. N >= K >= 0;
MB
MB is INTEGER The block size to be used in the blocked QR. MB > N. (must be the same as DLATSQR)
NB
NB is INTEGER The column block size to be used in the blocked QR. N >= NB >= 1.
A
A is DOUBLE PRECISION array, dimension (LDA,K) The i-th column must contain the vector which defines the blockedelementary reflector H(i), for i = 1,2,...,k, as returned by DLATSQR in the first k columns of its array argument A.
LDA
LDA is INTEGER The leading dimension of the array A. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N).
T
T is DOUBLE PRECISION array, dimension ( N * Number of blocks(CEIL(M-K/MB-K)), The blocked upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks. See below for further details.
LDT
LDT is INTEGER The leading dimension of the array T. LDT >= NB.
C
C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
(workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
LWORK
LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N)*NB; if SIDE = 'R', LWORK >= max(1,MB)*NB. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal valueAuthor: Univ​. of Tennessee Univ​. of California Berkeley Univ​. of Colorado Denver NAG Ltd​. Further Details: Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations, representing Q as a product of other orthogonal matrices Q = Q(1) * Q(2) * ​. ​. ​. * Q(k) where each Q(i) zeros out subdiagonal entries of a block of MB rows of A: Q(1) zeros out the subdiagonal entries of rows 1:MB of A Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A ​. ​. ​. Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors stored under the diagonal of rows 1:MB of A, and by upper triangular block reflectors, stored in array T(1:LDT,1:N)​. For more information see Further Details in GEQRT​. Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N)​. The last Q(k) may use fewer rows​. For more information see Further Details in TPQRT​. For more details of the overall algorithm, see the description of Sequential TSQR in Section 2​.2 of [1]​. [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,” J​. Demmel, L​. Grigori, M​. Hoemmen, J​. Langou, SIAM J​. Sci​. Comput, vol​. 34, no​. 1, 2012 Definition at line 197 of file dlamtsqr​.f​.

AuthorGenerated automatically by Doxygen for LAPACK from the source code​.
0
Johanes Gumabo
Data Size   :   19,702 byte
man-dlamtsqr.f.3Build   :   2024-12-05, 20:55   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   2 / 189,425
Visitor ID   :     :  
Visitor IP   :   52.14.7.103   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.