dlatps.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEdlatps.f
SYNOPSIS
Functions/Subroutinessubroutine dlatps (UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE, CNORM, INFO)
DLATPS solves a triangular system of equations with the matrix held in packed storage.
Function/Subroutine Documentation
subroutine dlatps (character UPLO, character TRANS, character DIAG, character NORMIN, integer N, double precision, dimension( * ) AP, double precision, dimension( * ) X, double precision SCALE, double precision, dimension( * ) CNORM, integer INFO)DLATPS solves a triangular system of equations with the matrix held in packed storage. Purpose: DLATPS solves one of the triangular systems
A *x = s*b or A**T*x = s*b
with scaling to prevent overflow, where A is an upper or lower
triangular matrix stored in packed form. Here A**T denotes the
transpose of A, x and b are n-element vectors, and s is a scaling
factor, usually less than or equal to 1, chosen so that the
components of x will be less than the overflow threshold. If the
unscaled problem will not cause overflow, the Level 2 BLAS routine
DTPSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
then s is set to 0 and a non-trivial solution to A*x = 0 is returned.Parameters: UPLO UPLO is CHARACTER*1
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
TRANS TRANS is CHARACTER*1
Specifies the operation applied to A.
= 'N': Solve A * x = s*b (No transpose)
= 'T': Solve A**T* x = s*b (Transpose)
= 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)
DIAG DIAG is CHARACTER*1
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular
NORMIN NORMIN is CHARACTER*1
Specifies whether CNORM has been set or not.
= 'Y': CNORM contains the column norms on entry
= 'N': CNORM is not set on entry. On exit, the norms will
be computed and stored in CNORM.
N N is INTEGER
The order of the matrix A. N >= 0.
AP AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
X X is DOUBLE PRECISION array, dimension (N)
On entry, the right hand side b of the triangular system.
On exit, X is overwritten by the solution vector x.
SCALE SCALE is DOUBLE PRECISION
The scaling factor s for the triangular system
A * x = s*b or A**T* x = s*b.
If SCALE = 0, the matrix A is singular or badly scaled, and
the vector x is an exact or approximate solution to A*x = 0.
CNORM CNORM is DOUBLE PRECISION array, dimension (N)
If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
contains the norm of the off-diagonal part of the j-th column
of A. If TRANS = 'N', CNORM(j) must be greater than or equal
to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
must be greater than or equal to the 1-norm.
If NORMIN = 'N', CNORM is an output argument and CNORM(j)
returns the 1-norm of the offdiagonal part of the j-th column
of A.
INFO INFO is INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal valueAuthor: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: December 2016 Further Details: A rough bound on x is computed; if that is less than overflow, DTPSV
is called, otherwise, specific code is used which checks for possible
overflow or divide-by-zero at every operation.
A columnwise scheme is used for solving A*x = b. The basic algorithm
if A is lower triangular is
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
end
Define bounds on the components of x after j iterations of the loop:
M(j) = bound on x[1:j]
G(j) = bound on x[j+1:n]
Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
Then for iteration j+1 we have
M(j+1) <= G(j) / | A(j+1,j+1) |
G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
<= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
where CNORM(j+1) is greater than or equal to the infinity-norm of
column j+1 of A, not counting the diagonal. Hence
G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
1<=i<=j
and
|x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
1<=i< j
Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTPSV if the
reciprocal of the largest M(j), j=1,..,n, is larger than
max(underflow, 1/overflow).
The bound on x(j) is also used to determine when a step in the
columnwise method can be performed without fear of overflow. If
the computed bound is greater than a large constant, x is scaled to
prevent overflow, but if the bound overflows, x is set to 0, x(j) to
1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
Similarly, a row-wise scheme is used to solve A**T*x = b. The basic
algorithm for A upper triangular is
for j = 1, ..., n
x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j)
end
We simultaneously compute two bounds
G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j
M(j) = bound on x(i), 1<=i<=j
The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
Then the bound on x(j) is
M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
<= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
1<=i<=j
and we can safely call DTPSV if 1/M(n) and 1/G(n) are both greater
than max(underflow, 1/overflow).Definition at line 231 of file dlatps.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 22,901 byte
man-dlatps.f.3Build : 2024-12-05, 20:55 :
Visitor Screen : x
Visitor Counter ( page / site ) : 3 / 185,600
Visitor ID : :
Visitor IP : 3.133.155.48 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.