DSBGST - Online Linux Manual PageSection : 1
Updated : November 2008
Source : LAPACK routine (version 3.2)
Note : LAPACK routine (version 3.2)

NAMEDSBGST - reduces a real symmetric-definite banded generalized eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,

SYNOPSISSUBROUTINE DSBGST(  VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, LDX, WORK, INFO )  CHARACTER UPLO, VECT  INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N  DOUBLE PRECISION AB( LDAB, * ), BB( LDBB, * ), WORK( * ), X( LDX, * )

PURPOSEDSBGST reduces a real symmetric-definite banded generalized eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, such that C has the same bandwidth as A.
B must have been previously factorized as S**T*S by DPBSTF, using a split Cholesky factorization. A is overwritten by C = X**T*A*X, where X = S**(-1)*Q and Q is an orthogonal matrix chosen to preserve the bandwidth of A.

ARGUMENTSVECT (input) CHARACTER*1  = 'N': do not form the transformation matrix X;
= 'V': form X.
UPLO (input) CHARACTER*1  
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER  The order of the matrices A and B. N >= 0. KA (input) INTEGER  The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0. KB (input) INTEGER  The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)  On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the transformed matrix X**T*A*X, stored in the same format as A. LDAB (input) INTEGER  The leading dimension of the array AB. LDAB >= KA+1. BB (input) DOUBLE PRECISION array, dimension (LDBB,N)  The banded factor S from the split Cholesky factorization of B, as returned by DPBSTF, stored in the first KB+1 rows of the array. LDBB (input) INTEGER  The leading dimension of the array BB. LDBB >= KB+1. X (output) DOUBLE PRECISION array, dimension (LDX,N)  If VECT = 'V', the n-by-n matrix X. If VECT = 'N', the array X is not referenced. LDX (input) INTEGER  The leading dimension of the array X. LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise. WORK (workspace) DOUBLE PRECISION array, dimension (2*N)  INFO (output) INTEGER  = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
0
Johanes Gumabo
Data Size   :   9,410 byte
man-dsbgst.lBuild   :   2024-12-05, 20:55   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   3 / 184,998
Visitor ID   :     :  
Visitor IP   :   18.224.44.207   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.