DSBGVX - Online Linux Manual PageSection : 1
Updated : November 2008
Source : LAPACK driver routine (version 3.2)
Note : LAPACK driver routine (version 3.2)

NAMEDSBGVX - computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x

SYNOPSISSUBROUTINE DSBGVX(  JOBZ, RANGE, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Q, LDQ, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )  CHARACTER JOBZ, RANGE, UPLO  INTEGER IL, INFO, IU, KA, KB, LDAB, LDBB, LDQ, LDZ, M, N  DOUBLE PRECISION ABSTOL, VL, VU  INTEGER IFAIL( * ), IWORK( * )  DOUBLE PRECISION AB( LDAB, * ), BB( LDBB, * ), Q( LDQ, * ), W( * ), WORK( * ), Z( LDZ, * )

PURPOSEDSBGVX computes selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and banded, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

ARGUMENTSJOBZ (input) CHARACTER*1  = 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1  
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU] will be found. = 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1  
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER  The order of the matrices A and B. N >= 0. KA (input) INTEGER  The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0. KB (input) INTEGER  The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0. AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N)  On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed. LDAB (input) INTEGER  The leading dimension of the array AB. LDAB >= KA+1. BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N)  On entry, the upper or lower triangle of the symmetric band matrix B, stored in the first kb+1 rows of the array. The j-th column of B is stored in the j-th column of the array BB as follows: if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**T*S, as returned by DPBSTF. LDBB (input) INTEGER  The leading dimension of the array BB. LDBB >= KB+1. Q (output) DOUBLE PRECISION array, dimension (LDQ, N)  If JOBZ = 'V', the n-by-n matrix used in the reduction of A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, and consequently C to tridiagonal form. If JOBZ = 'N', the array Q is not referenced. LDQ (input) INTEGER  The leading dimension of the array Q. If JOBZ = 'N', LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). VL (input) DOUBLE PRECISION  VU (input) DOUBLE PRECISION If RANGE='V', the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'. IL (input) INTEGER  IU (input) INTEGER If RANGE='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'. ABSTOL (input) DOUBLE PRECISION  The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( |a|,|b| ) , where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*DLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*DLAMCH('S'). M (output) INTEGER  The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. W (output) DOUBLE PRECISION array, dimension (N)  If INFO = 0, the eigenvalues in ascending order. Z (output) DOUBLE PRECISION array, dimension (LDZ, N)  If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the i-th column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so Z**T*B*Z = I. If JOBZ = 'N', then Z is not referenced. LDZ (input) INTEGER  The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK (workspace/output) DOUBLE PRECISION array, dimension (7*N)  IWORK (workspace/output) INTEGER array, dimension (5*N)  IFAIL (output) INTEGER array, dimension (M)  If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvalues that failed to converge. If JOBZ = 'N', then IFAIL is not referenced. INFO (output) INTEGER  = 0 : successful exit
< 0 : if INFO = -i, the i-th argument had an illegal value
<= N: if INFO = i, then i eigenvectors failed to converge. Their indices are stored in IFAIL. > N : DPBSTF returned an error code; i.e., if INFO = N + i, for 1 <= i <= N, then the leading minor of order i of B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

FURTHER DETAILSBased on contributions by

   Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
0
Johanes Gumabo
Data Size   :   18,059 byte
man-dsbgvx.lBuild   :   2024-12-29, 07:25   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   2 / 262,124
Visitor ID   :     :  
Visitor IP   :   3.144.227.73   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.