dtgsja.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEdtgsja.f
SYNOPSIS
Functions/Subroutinessubroutine dtgsja (JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE, INFO)
DTGSJA
Function/Subroutine Documentation
subroutine dtgsja (character JOBU, character JOBV, character JOBQ, integer M, integer P, integer N, integer K, integer L, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( ldb, * ) B, integer LDB, double precision TOLA, double precision TOLB, double precision, dimension( * ) ALPHA, double precision, dimension( * ) BETA, double precision, dimension( ldu, * ) U, integer LDU, double precision, dimension( ldv, * ) V, integer LDV, double precision, dimension( ldq, * ) Q, integer LDQ, double precision, dimension( * ) WORK, integer NCYCLE, integer INFO)DTGSJA Purpose: DTGSJA computes the generalized singular value decomposition (GSVD)
of two real upper triangular (or trapezoidal) matrices A and B.
On entry, it is assumed that matrices A and B have the following
forms, which may be obtained by the preprocessing subroutine DGGSVP
from a general M-by-N matrix A and P-by-N matrix B:
N-K-L K L
A = K ( 0 A12 A13 ) if M-K-L >= 0;
L ( 0 0 A23 )
M-K-L ( 0 0 0 )
N-K-L K L
A = K ( 0 A12 A13 ) if M-K-L < 0;
M-K ( 0 0 A23 )
N-K-L K L
B = L ( 0 0 B13 )
P-L ( 0 0 0 )
where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal.
On exit,
U**T *A*Q = D1*( 0 R ), V**T *B*Q = D2*( 0 R ),
where U, V and Q are orthogonal matrices.
R is a nonsingular upper triangular matrix, and D1 and D2 are
``diagonal'' matrices, which are of the following structures:
If M-K-L >= 0,
K L
D1 = K ( I 0 )
L ( 0 C )
M-K-L ( 0 0 )
K L
D2 = L ( 0 S )
P-L ( 0 0 )
N-K-L K L
( 0 R ) = K ( 0 R11 R12 ) K
L ( 0 0 R22 ) L
where
C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
S = diag( BETA(K+1), ... , BETA(K+L) ),
C**2 + S**2 = I.
R is stored in A(1:K+L,N-K-L+1:N) on exit.
If M-K-L < 0,
K M-K K+L-M
D1 = K ( I 0 0 )
M-K ( 0 C 0 )
K M-K K+L-M
D2 = M-K ( 0 S 0 )
K+L-M ( 0 0 I )
P-L ( 0 0 0 )
N-K-L K M-K K+L-M
( 0 R ) = K ( 0 R11 R12 R13 )
M-K ( 0 0 R22 R23 )
K+L-M ( 0 0 0 R33 )
where
C = diag( ALPHA(K+1), ... , ALPHA(M) ),
S = diag( BETA(K+1), ... , BETA(M) ),
C**2 + S**2 = I.
R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
( 0 R22 R23 )
in B(M-K+1:L,N+M-K-L+1:N) on exit.
The computation of the orthogonal transformation matrices U, V or Q
is optional. These matrices may either be formed explicitly, or they
may be postmultiplied into input matrices U1, V1, or Q1.Parameters: JOBU JOBU is CHARACTER*1
= 'U': U must contain an orthogonal matrix U1 on entry, and
the product U1*U is returned;
= 'I': U is initialized to the unit matrix, and the
orthogonal matrix U is returned;
= 'N': U is not computed.
JOBV JOBV is CHARACTER*1
= 'V': V must contain an orthogonal matrix V1 on entry, and
the product V1*V is returned;
= 'I': V is initialized to the unit matrix, and the
orthogonal matrix V is returned;
= 'N': V is not computed.
JOBQ JOBQ is CHARACTER*1
= 'Q': Q must contain an orthogonal matrix Q1 on entry, and
the product Q1*Q is returned;
= 'I': Q is initialized to the unit matrix, and the
orthogonal matrix Q is returned;
= 'N': Q is not computed.
M M is INTEGER
The number of rows of the matrix A. M >= 0.
P P is INTEGER
The number of rows of the matrix B. P >= 0.
N N is INTEGER
The number of columns of the matrices A and B. N >= 0.
K K is INTEGER
L L is INTEGER
K and L specify the subblocks in the input matrices A and B:
A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
of A and B, whose GSVD is going to be computed by DTGSJA.
See Further Details.
A A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
matrix R or part of R. See Purpose for details.
LDA LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B B is DOUBLE PRECISION array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
a part of R. See Purpose for details.
LDB LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,P).
TOLA TOLA is DOUBLE PRECISION
TOLB TOLB is DOUBLE PRECISION
TOLA and TOLB are the convergence criteria for the Jacobi-
Kogbetliantz iteration procedure. Generally, they are the
same as used in the preprocessing step, say
TOLA = max(M,N)*norm(A)*MAZHEPS,
TOLB = max(P,N)*norm(B)*MAZHEPS.
ALPHA ALPHA is DOUBLE PRECISION array, dimension (N)
BETA BETA is DOUBLE PRECISION array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
BETA(1:K) = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = diag(C),
BETA(K+1:K+L) = diag(S),
or if M-K-L < 0,
ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
Furthermore, if K+L < N,
ALPHA(K+L+1:N) = 0 and
BETA(K+L+1:N) = 0.
U U is DOUBLE PRECISION array, dimension (LDU,M)
On entry, if JOBU = 'U', U must contain a matrix U1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBU = 'I', U contains the orthogonal matrix U;
if JOBU = 'U', U contains the product U1*U.
If JOBU = 'N', U is not referenced.
LDU LDU is INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
V V is DOUBLE PRECISION array, dimension (LDV,P)
On entry, if JOBV = 'V', V must contain a matrix V1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBV = 'I', V contains the orthogonal matrix V;
if JOBV = 'V', V contains the product V1*V.
If JOBV = 'N', V is not referenced.
LDV LDV is INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
Q Q is DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
the orthogonal matrix returned by DGGSVP).
On exit,
if JOBQ = 'I', Q contains the orthogonal matrix Q;
if JOBQ = 'Q', Q contains the product Q1*Q.
If JOBQ = 'N', Q is not referenced.
LDQ LDQ is INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
WORK WORK is DOUBLE PRECISION array, dimension (2*N)
NCYCLE NCYCLE is INTEGER
The number of cycles required for convergence.
INFO INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1: the procedure does not converge after MAXIT cycles. Internal Parameters
===================
MAXIT INTEGER
MAXIT specifies the total loops that the iterative procedure
may take. If after MAXIT cycles, the routine fails to
converge, we return INFO = 1..fi Author:
Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Date:
December 2016
Further Details:
DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
matrix B13 to the form:
U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1,
where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose
of Z. C1 and S1 are diagonal matrices satisfying
C1**2 + S1**2 = I,
and R1 is an L-by-L nonsingular upper triangular matrix.Definition at line 380 of file dtgsja.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 32,278 byte
man-dtgsja.3Build : 2024-12-29, 07:25 :
Visitor Screen : x
Visitor Counter ( page / site ) : 3 / 260,363
Visitor ID : :
Visitor IP : 18.220.222.188 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.