GLMAP2 - Online Linux Manual PageSection : 3G
NAME"glMap2d, glMap2f − define a two-dimensional evaluator
C SPECIFICATIONvoid glMap2d( GLenum target, GLdouble u1,
GLdouble u2,
GLint ustride,
GLint uorder,
GLdouble v1,
GLdouble v2,
GLint vstride,
GLint vorder,
const GLdouble *points )void glMap2f( GLenum target, GLfloat u1,
GLfloat u2,
GLint ustride,
GLint uorder,
GLfloat v1,
GLfloat v2,
GLint vstride,
GLint vorder,
const GLfloat *points )
PARAMETERStarget Specifies the kind of values that are generated by the evaluator. Symbolic constants GL_MAP2_VERTEX_3, GL_MAP2_VERTEX_4, GL_MAP2_INDEX, GL_MAP2_COLOR_4, GL_MAP2_NORMAL, GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3, and GL_MAP2_TEXTURE_COORD_4 are accepted. u1, u2 Specify a linear mapping of u, as presented to glEvalCoord2, to uhat, one of the two variables that are evaluated by the equations specified by this command. Initially, u1 is 0 and u2 is 1. ustride Specifies the number of floats or doubles between the beginning of control point Rij and the beginning of control point R(i+1)j, where i and j are the u and v control point indices, respectively. This allows control points to be embedded in arbitrary data structures. The only constraint is that the values for a particular control point must occupy contiguous memory locations. The initial value of ustride is 0. uorder Specifies the dimension of the control point array in the u axis. Must be positive. The initial value is 1. v1, v2 Specify a linear mapping of v, as presented to glEvalCoord2, to vhat, one of the two variables that are evaluated by the equations specified by this command. Initially, v1 is 0 and v2 is 1. vstride Specifies the number of floats or doubles between the beginning of control point Rij and the beginning of control point Ri(j+1), where i and j are the u and v control point indices, respectively. This allows control points to be embedded in arbitrary data structures. The only constraint is that the values for a particular control point must occupy contiguous memory locations. The initial value of vstride is 0. vorder Specifies the dimension of the control point array in the v axis. Must be positive. The initial value is 1. points Specifies a pointer to the array of control points.
DESCRIPTIONEvaluators provide a way to use polynomial or rational polynomial mapping to produce vertices, normals, texture coordinates, and colors. The values produced by an evaluator are sent on to further stages of GL processing just as if they had been presented using glVertex, glNormal, glTexCoord, and glColor commands, except that the generated values do not update the current normal, texture coordinates, or color. All polynomial or rational polynomial splines of any degree (up to the maximum degree supported by the GL implementation) can be described using evaluators. These include almost all surfaces used in computer graphics, including B-spline surfaces, NURBS surfaces, Bezier surfaces, and so on. Evaluators define surfaces based on bivariate Bernstein polynomials. Define p(uhat,vhat) as p(uhat,vhat)~~=~~down30size18⎲⎳fromsize8i~=~0tosize9n~size18⎲⎳fromsize8j~=~0tosize9m~up15Bin(uhat)~Bjm(vhat)~Rijwhere Rij is a control point, Bin(uhat) is the ith Bernstein polynomial of degree
n (uorder = n~+~1) Bin(uhat)~~=~~left(down20cpileni⎞⎠~right)uhati(1-uhat)n-iand Bjm(vhat) is the jth Bernstein polynomial of degree m (vorder = m~+~1) Bjm(vhat)~~=~~left(down20cpilemj⎞⎠~right)vhatj(1-vhat)m-jRecall that 00~==~1 and left(down20cpilen0⎞⎠~right)~~==~~1 glMap2 is used to define the basis and to specify what kind of values are produced. Once defined, a map can be enabled and disabled by calling glEnable and glDisable with the map name, one of the nine predefined values for target, described below. When glEvalCoord2 presents values u and v, the bivariate Bernstein polynomials are evaluated using uhat and vhat, where uhat~~=~~u~-~u1overu2~-~u1 vhat~~=~~v~-~v1overv2~-~v1 target is a symbolic constant that indicates what kind of control points are provided in points, and what output is generated when the map is evaluated. It can assume one of nine predefined values: GL_MAP2_VERTEX_3 Each control point is three floating-point values representing x, y, and z. Internal glVertex3 commands are generated when the map is evaluated. GL_MAP2_VERTEX_4 Each control point is four floating-point values representing x, y, z, and w. Internal glVertex4 commands are generated when the map is evaluated. GL_MAP2_INDEX Each control point is a single floating-point value representing a color index. Internal glIndex commands are generated when the map is evaluated but the current index is not updated with the value of these glIndex commands. GL_MAP2_COLOR_4 Each control point is four floating-point values representing red, green, blue, and alpha. Internal glColor4 commands are generated when the map is evaluated but the current color is not updated with the value of these glColor4 commands. GL_MAP2_NORMAL Each control point is three floating-point values representing the x, y, and z components of a normal vector. Internal glNormal commands are generated when the map is evaluated but the current normal is not updated with the value of these glNormal commands. GL_MAP2_TEXTURE_COORD_1 Each control point is a single floating-point value representing the s texture coordinate. Internal
glTexCoord1 commands are generated when the map is evaluated but the current texture coordinates are not updated with the value of these glTexCoord commands. GL_MAP2_TEXTURE_COORD_2 Each control point is two floating-point values representing the s and t texture coordinates. Internal
glTexCoord2 commands are generated when the map is evaluated but the current texture coordinates are not updated with the value of these glTexCoord commands. GL_MAP2_TEXTURE_COORD_3 Each control point is three floating-point values representing the s, t, and r texture coordinates. Internal glTexCoord3 commands are generated when the map is evaluated but the current texture coordinates are not updated with the value of these glTexCoord commands. GL_MAP2_TEXTURE_COORD_4 Each control point is four floating-point values representing the s, t, r, and q texture coordinates. Internal
glTexCoord4 commands are generated when the map is evaluated but the current texture coordinates are not updated with the value of these glTexCoord commands. ustride, uorder, vstride, vorder, and points define the array addressing for accessing the control points. points is the location of the first control point, which occupies one, two, three, or four contiguous memory locations, depending on which map is being defined. There are uorder~times~vorder control points in the array. ustride specifies how many float or double locations are skipped to advance the internal memory pointer from control point Rij to control point R(i+1)j. vstride specifies how many float or double locations are skipped to advance the internal memory pointer from control point Rij to control point Ri(j+1).
NOTESAs is the case with all GL commands that accept pointers to data, it is as if the contents of points were copied by glMap2 before glMap2 returns. Changes to the contents of points have no effect after glMap2 is called. Initially, GL_AUTO_NORMAL is enabled. If GL_AUTO_NORMAL is enabled, normal vectors are generated when either GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4 is used to generate vertices.
ERRORSGL_INVALID_ENUM is generated if target is not an accepted value. GL_INVALID_VALUE is generated if u1 is equal to u2, or if v1 is equal to v2. GL_INVALID_VALUE is generated if either ustride or vstride is less than the number of values in a control point. GL_INVALID_VALUE is generated if either uorder or vorder is less than 1 or greater than the return value of GL_MAX_EVAL_ORDER. GL_INVALID_OPERATION is generated if glMap2 is executed between the execution of glBegin and the corresponding execution of glEnd. When the GL_ARB_multitexture extension is supported, GL_INVALID_OPERATION is generated if glMap2 is called and the value of GL_ACTIVE_TEXTURE_ARB is not GL_TEXTURE0_ARB.
ASSOCIATED GETSglGetMap
glGet with argument GL_MAX_EVAL_ORDER
glIsEnabled with argument GL_MAP2_VERTEX_3
glIsEnabled with argument GL_MAP2_VERTEX_4
glIsEnabled with argument GL_MAP2_INDEX
glIsEnabled with argument GL_MAP2_COLOR_4
glIsEnabled with argument GL_MAP2_NORMAL
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP2_TEXTURE_COORD_4
SEE ALSOglBegin(3G), glColor(3G), glEnable(3G), glEvalCoord(3G), glEvalMesh(3G), glEvalPoint(3G), glMap1(3G), glMapGrid(3G), glNormal(3G), glTexCoord(3G), glVertex(3G) 0
Johanes Gumabo
Data Size : 33,871 byte
man-glMap2d.3GBuild : 2024-12-05, 20:55 :
Visitor Screen : x
Visitor Counter ( page / site ) : 2 / 238,125
Visitor ID : :
Visitor IP : 3.145.58.141 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.
ERROR : Need New Coding : (rof_EQ_stradd_html|19|g___lMap2.3G|66|hat|to $u hat$,
) (rof_EQ_stradd_html|19|g___lMap2.3G|88|hat|to $v hat$,
) (rof_EQ_stradd_html|19|g___lMap2.3G|134|hat|Define $p ( u hat , v hat ) $ as
) (rof_EQ_stradd_html|19|g___lMap2.3G|134|hat|Define $p ( u hat , v hat ) $ as
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|hat|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|hat|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|size|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|from|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|size|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|to|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|size|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|size|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|from|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|size|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|to|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|size|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|hat|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|142|hat|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|146|hat|$B sub i sup n ( u hat )$
) (rof_EQ_stradd_html|19|g___lMap2.3G|155|hat|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|155|left|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|155|cpile|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|155|right|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|155|hat|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|155|hat|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|157|hat|and $B sub j sup m ( v hat )$
) (rof_EQ_stradd_html|19|g___lMap2.3G|163|hat|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|163|left|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|163|cpile|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|163|right|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|163|hat|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|163|hat|.EN
) (rof_EQ_stradd_html|19|g___lMap2.3G|167|left|$0 sup 0 ~==~ 1 $ and $ left ( ^ down 20 {cpile { n above 0 }} ~^ right ) ~~==~~ 1 $
) (rof_EQ_stradd_html|19|g___lMap2.3G|167|cpile|$0 sup 0 ~==~ 1 $ and $ left ( ^ down 20 {cpile { n above 0 }} ~^ right ) ~~==~~ 1 $
) (rof_EQ_stradd_html|19|g___lMap2.3G|167|right|$0 sup 0 ~==~ 1 $ and $ left ( ^ down 20 {cpile { n above 0 }} ~^ right ) ~~==~~ 1 $
) (rof_EQ_stradd_html|19|g___lMap2.3G|176|hat|the bivariate Bernstein polynomials are evaluated using $u hat$ and $v hat$,
) (rof_EQ_stradd_html|19|g___lMap2.3G|176|hat|the bivariate Bernstein polynomials are evaluated using $u hat$ and $v hat$,
) (rof_EQ_stradd_html|19|g___lMap2.3G|180|hat|$u hat ~~=~~ {u ~-~ "u1"} over {"u2" ~-~ "u1"}$
) (rof_EQ_stradd_html|19|g___lMap2.3G|180|over|$u hat ~~=~~ {u ~-~ "u1"} over {"u2" ~-~ "u1"}$
) (rof_EQ_stradd_html|19|g___lMap2.3G|183|hat|$v hat ~~=~~ {v ~-~ "v1"} over {"v2" ~-~ "v1"}$
) (rof_EQ_stradd_html|19|g___lMap2.3G|183|over|$v hat ~~=~~ {v ~-~ "v1"} over {"v2" ~-~ "v1"}$
)