getspnam - Online Linux Manual PageSection : 3
Updated : 2023-02-05
Source : Linux man-pages 6.03
NAMEgetspnam, getspnam_r, getspent, getspent_r, setspent, endspent, fgetspent, fgetspent_r, sgetspent, sgetspent_r, putspent, lckpwdf, ulckpwdf − get shadow password file entry
LIBRARYStandard C library (libc, −lc)
SYNOPSIS/* General shadow password file API */
#include <shadow.h>struct spwd *getspnam(const char *name);
struct spwd *getspent(void);void setspent(void);
void endspent(void);struct spwd *fgetspent(FILE *stream);
struct spwd *sgetspent(const char *s);int putspent(const struct spwd *p, FILE *stream);int lckpwdf(void);
int ulckpwdf(void);/* GNU extension */
#include <shadow.h>int getspent_r(struct spwd *spbuf,
char buf[.buflen], size_t buflen, struct spwd **spbufp);
int getspnam_r(const char *name, struct spwd *spbuf,
char buf[.buflen], size_t buflen, struct spwd **spbufp);int fgetspent_r(FILE *stream, struct spwd *spbuf,
char buf[.buflen], size_t buflen, struct spwd **spbufp);
int sgetspent_r(const char *s, struct spwd *spbuf,
char buf[.buflen], size_t buflen, struct spwd **spbufp);Feature Test Macro Requirements for glibc (see feature_test_macros(7)): getspent_r(), getspnam_r(), fgetspent_r(), sgetspent_r(): Since glibc 2.19:
_DEFAULT_SOURCE
glibc 2.19 and earlier:
_BSD_SOURCE || _SVID_SOURCE
DESCRIPTIONLong ago it was considered safe to have encrypted passwords openly visible in the password file. When computers got faster and people got more security-conscious, this was no longer acceptable. Julianne Frances Haugh implemented the shadow password suite that keeps the encrypted passwords in the shadow password database (e.g., the local shadow password file /etc/shadow, NIS, and LDAP), readable only by root. The functions described below resemble those for the traditional password database (e.g., see getpwnam(3) and getpwent(3)). The getspnam() function returns a pointer to a structure containing the broken-out fields of the record in the shadow password database that matches the username name. The getspent() function returns a pointer to the next entry in the shadow password database. The position in the input stream is initialized by setspent(). When done reading, the program may call endspent() so that resources can be deallocated. The fgetspent() function is similar to getspent() but uses the supplied stream instead of the one implicitly opened by setspent(). The sgetspent() function parses the supplied string s into a struct spwd. The putspent() function writes the contents of the supplied struct spwd *p as a text line in the shadow password file format to stream. String entries with value NULL and numerical entries with value −1 are written as an empty string. The lckpwdf() function is intended to protect against multiple simultaneous accesses of the shadow password database. It tries to acquire a lock, and returns 0 on success, or −1 on failure (lock not obtained within 15 seconds). The ulckpwdf() function releases the lock again. Note that there is no protection against direct access of the shadow password file. Only programs that use lckpwdf() will notice the lock. These were the functions that formed the original shadow API. They are widely available.
Reentrant versionsAnalogous to the reentrant functions for the password database, glibc also has reentrant functions for the shadow password database. The getspnam_r() function is like getspnam() but stores the retrieved shadow password structure in the space pointed to by spbuf. This shadow password structure contains pointers to strings, and these strings are stored in the buffer buf of size buflen. A pointer to the result (in case of success) or NULL (in case no entry was found or an error occurred) is stored in *spbufp. The functions getspent_r(), fgetspent_r(), and sgetspent_r() are similarly analogous to their nonreentrant counterparts. Some non-glibc systems also have functions with these names, often with different prototypes.
StructureThe shadow password structure is defined in <shadow.h> as follows: struct spwd {
char *sp_namp; /* Login name */
char *sp_pwdp; /* Encrypted password */
long sp_lstchg; /* Date of last change
(measured in days since
1970−01−01 00:00:00 +0000 (UTC)) */
long sp_min; /* Min # of days between changes */
long sp_max; /* Max # of days between changes */
long sp_warn; /* # of days before password expires
to warn user to change it */
long sp_inact; /* # of days after password expires
until account is disabled */
long sp_expire; /* Date when account expires
(measured in days since
1970−01−01 00:00:00 +0000 (UTC)) */
unsigned long sp_flag; /* Reserved */
};
RETURN VALUEThe functions that return a pointer return NULL if no more entries are available or if an error occurs during processing. The functions which have int as the return value return 0 for success and −1 for failure, with errno set to indicate the error. For the nonreentrant functions, the return value may point to static area, and may be overwritten by subsequent calls to these functions. The reentrant functions return zero on success. In case of error, an error number is returned.
ERRORSEACCES The caller does not have permission to access the shadow password file. ERANGE Supplied buffer is too small.
FILES/etc/shadow local shadow password database file /etc/.pwd.lock lock file The include file <paths.h> defines the constant _PATH_SHADOW to the pathname of the shadow password file.
ATTRIBUTESFor an explanation of the terms used in this section, see attributes(7). InterfaceAttributeValue getspnam() Thread safety MT-Unsafe race:getspnam locale getspent() Thread safety MT-Unsafe race:getspent race:spentbuf locale setspent(), endspent(), getspent_r() Thread safety MT-Unsafe race:getspent locale fgetspent() Thread safety MT-Unsafe race:fgetspent sgetspent() Thread safety MT-Unsafe race:sgetspent putspent(), getspnam_r(), sgetspent_r() Thread safety MT-Safe locale lckpwdf(), ulckpwdf(), fgetspent_r() Thread safety MT-Safe In the above table, getspent in race:getspent signifies that if any of the functions setspent(), getspent(), getspent_r(), or endspent() are used in parallel in different threads of a program, then data races could occur.
STANDARDSThe shadow password database and its associated API are not specified in POSIX.1. However, many other systems provide a similar API.
SEE ALSOgetgrnam(3), getpwnam(3), getpwnam_r(3), shadow(5) 0
Johanes Gumabo
Data Size : 25,732 byte
man-putspent.3Build : 2024-12-05, 20:55 :
Visitor Screen : x
Visitor Counter ( page / site ) : 4 / 201,739
Visitor ID : :
Visitor IP : 3.23.103.203 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.