zgesvdx.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEzgesvdx.f
SYNOPSIS
Functions/Subroutinessubroutine zgesvdx (JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, IL, IU, NS, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, IWORK, INFO)
ZGESVDX computes the singular value decomposition (SVD) for GE matrices
Function/Subroutine Documentation
subroutine zgesvdx (character JOBU, character JOBVT, character RANGE, integer M, integer N, complex*16, dimension( lda, * ) A, integer LDA, double precision VL, double precision VU, integer IL, integer IU, integer NS, double precision, dimension( * ) S, complex*16, dimension( ldu, * ) U, integer LDU, complex*16, dimension( ldvt, * ) VT, integer LDVT, complex*16, dimension( * ) WORK, integer LWORK, double precision, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer INFO) ZGESVDX computes the singular value decomposition (SVD) for GE matrices Purpose: ZGESVDX computes the singular value decomposition (SVD) of a complex
M-by-N matrix A, optionally computing the left and/or right singular
vectors. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M unitary matrix, and
V is an N-by-N unitary matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
ZGESVDX uses an eigenvalue problem for obtaining the SVD, which
allows for the computation of a subset of singular values and
vectors. See DBDSVDX for details.
Note that the routine returns V**T, not V.Parameters: JOBU JOBU is CHARACTER*1
Specifies options for computing all or part of the matrix U:
= 'V': the first min(m,n) columns of U (the left singular
vectors) or as specified by RANGE are returned in
the array U;
= 'N': no columns of U (no left singular vectors) are
computed.
JOBVT JOBVT is CHARACTER*1
Specifies options for computing all or part of the matrix
V**T:
= 'V': the first min(m,n) rows of V**T (the right singular
vectors) or as specified by RANGE are returned in
the array VT;
= 'N': no rows of V**T (no right singular vectors) are
computed.
RANGE RANGE is CHARACTER*1
= 'A': all singular values will be found.
= 'V': all singular values in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th singular values will be found.
M M is INTEGER
The number of rows of the input matrix A. M >= 0.
N N is INTEGER
The number of columns of the input matrix A. N >= 0.
A A is COMPLEX*16 array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the contents of A are destroyed.
LDA LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
VL VL is DOUBLE PRECISION
If RANGE='V', the lower bound of the interval to
be searched for singular values. VU > VL.
Not referenced if RANGE = 'A' or 'I'.
VU VU is DOUBLE PRECISION
If RANGE='V', the upper bound of the interval to
be searched for singular values. VU > VL.
Not referenced if RANGE = 'A' or 'I'.
IL IL is INTEGER
If RANGE='I', the index of the
smallest singular value to be returned.
1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
Not referenced if RANGE = 'A' or 'V'.
IU IU is INTEGER
If RANGE='I', the index of the
largest singular value to be returned.
1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
Not referenced if RANGE = 'A' or 'V'.
NS NS is INTEGER
The total number of singular values found,
0 <= NS <= min(M,N).
If RANGE = 'A', NS = min(M,N); if RANGE = 'I', NS = IU-IL+1.
S S is DOUBLE PRECISION array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
U U is COMPLEX*16 array, dimension (LDU,UCOL)
If JOBU = 'V', U contains columns of U (the left singular
vectors, stored columnwise) as specified by RANGE; if
JOBU = 'N', U is not referenced.
Note: The user must ensure that UCOL >= NS; if RANGE = 'V',
the exact value of NS is not known in advance and an upper
bound must be used.
LDU LDU is INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBU = 'V', LDU >= M.
VT VT is COMPLEX*16 array, dimension (LDVT,N)
If JOBVT = 'V', VT contains the rows of V**T (the right singular
vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N',
VT is not referenced.
Note: The user must ensure that LDVT >= NS; if RANGE = 'V',
the exact value of NS is not known in advance and an upper
bound must be used.
LDVT LDVT is INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBVT = 'V', LDVT >= NS (see above).
WORK WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
LWORK LWORK is INTEGER
The dimension of the array WORK.
LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see
comments inside the code):
- PATH 1 (M much larger than N)
- PATH 1t (N much larger than M)
LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths.
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
RWORK RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
LRWORK >= MIN(M,N)*(MIN(M,N)*2+15*MIN(M,N)).
IWORK IWORK is INTEGER array, dimension (12*MIN(M,N))
If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0,
then IWORK contains the indices of the eigenvectors that failed
to converge in DBDSVDX/DSTEVX.
INFO INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge
in DBDSVDX/DSTEVX.
if INFO = N*2 + 1, an internal error occurred in
DBDSVDXAuthor: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: June 2016 Definition at line 272 of file zgesvdx.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 26,052 byte
man-zgesvdx.3Build : 2024-12-29, 07:25 :
Visitor Screen : x
Visitor Counter ( page / site ) : 3 / 256,939
Visitor ID : :
Visitor IP : 3.129.70.138 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.