zggev.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEzggev.f
SYNOPSIS
Functions/Subroutinessubroutine zggev (JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)
ZGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices
Function/Subroutine Documentation
subroutine zggev (character JOBVL, character JOBVR, integer N, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( ldb, * ) B, integer LDB, complex*16, dimension( * ) ALPHA, complex*16, dimension( * ) BETA, complex*16, dimension( ldvl, * ) VL, integer LDVL, complex*16, dimension( ldvr, * ) VR, integer LDVR, complex*16, dimension( * ) WORK, integer LWORK, double precision, dimension( * ) RWORK, integer INFO) ZGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices Purpose: ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices
(A,B), the generalized eigenvalues, and optionally, the left and/or
right generalized eigenvectors.
A generalized eigenvalue for a pair of matrices (A,B) is a scalar
lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
singular. It is usually represented as the pair (alpha,beta), as
there is a reasonable interpretation for beta=0, and even for both
being zero.
The right generalized eigenvector v(j) corresponding to the
generalized eigenvalue lambda(j) of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j).
The left generalized eigenvector u(j) corresponding to the
generalized eigenvalues lambda(j) of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B
where u(j)**H is the conjugate-transpose of u(j).Parameters: JOBVL JOBVL is CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.
JOBVR JOBVR is CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.
N N is INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A A is COMPLEX*16 array, dimension (LDA, N)
On entry, the matrix A in the pair (A,B).
On exit, A has been overwritten.
LDA LDA is INTEGER
The leading dimension of A. LDA >= max(1,N).
B B is COMPLEX*16 array, dimension (LDB, N)
On entry, the matrix B in the pair (A,B).
On exit, B has been overwritten.
LDB LDB is INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHA ALPHA is COMPLEX*16 array, dimension (N)
BETA BETA is COMPLEX*16 array, dimension (N)
On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
generalized eigenvalues.
Note: the quotients ALPHA(j)/BETA(j) may easily over- or
underflow, and BETA(j) may even be zero. Thus, the user
should avoid naively computing the ratio alpha/beta.
However, ALPHA will be always less than and usually
comparable with norm(A) in magnitude, and BETA always less
than and usually comparable with norm(B).
VL VL is COMPLEX*16 array, dimension (LDVL,N)
If JOBVL = 'V', the left generalized eigenvectors u(j) are
stored one after another in the columns of VL, in the same
order as their eigenvalues.
Each eigenvector is scaled so the largest component has
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVL = 'N'.
LDVL LDVL is INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR VR is COMPLEX*16 array, dimension (LDVR,N)
If JOBVR = 'V', the right generalized eigenvectors v(j) are
stored one after another in the columns of VR, in the same
order as their eigenvalues.
Each eigenvector is scaled so the largest component has
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVR = 'N'.
LDVR LDVR is INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
WORK WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,2*N).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
RWORK RWORK is DOUBLE PRECISION array, dimension (8*N)
INFO INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHA(j) and BETA(j) should be
correct for j=INFO+1,...,N.
> N: =N+1: other then QZ iteration failed in DHGEQZ,
=N+2: error return from DTGEVC.Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: April 2012 Definition at line 219 of file zggev.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 21,282 byte
man-zggev.3Build : 2024-12-29, 07:25 :
Visitor Screen : x
Visitor Counter ( page / site ) : 4 / 256,711
Visitor ID : :
Visitor IP : 18.190.219.200 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.