zlaed0.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEzlaed0.f
SYNOPSIS
Functions/Subroutinessubroutine zlaed0 (QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK, INFO)
ZLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
Function/Subroutine Documentation
subroutine zlaed0 (integer QSIZ, integer N, double precision, dimension( * ) D, double precision, dimension( * ) E, complex*16, dimension( ldq, * ) Q, integer LDQ, complex*16, dimension( ldqs, * ) QSTORE, integer LDQS, double precision, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer INFO)ZLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method. Purpose: Using the divide and conquer method, ZLAED0 computes all eigenvalues
of a symmetric tridiagonal matrix which is one diagonal block of
those from reducing a dense or band Hermitian matrix and
corresponding eigenvectors of the dense or band matrix.Parameters: QSIZ QSIZ is INTEGER
The dimension of the unitary matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
N N is INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
D D is DOUBLE PRECISION array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, the eigenvalues in ascending order.
E E is DOUBLE PRECISION array, dimension (N-1)
On entry, the off-diagonal elements of the tridiagonal matrix.
On exit, E has been destroyed.
Q Q is COMPLEX*16 array, dimension (LDQ,N)
On entry, Q must contain an QSIZ x N matrix whose columns
unitarily orthonormal. It is a part of the unitary matrix
that reduces the full dense Hermitian matrix to a
(reducible) symmetric tridiagonal matrix.
LDQ LDQ is INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
IWORK IWORK is INTEGER array,
the dimension of IWORK must be at least
6 + 6*N + 5*N*lg N
( lg( N ) = smallest integer k
such that 2^k >= N )
RWORK RWORK is DOUBLE PRECISION array,
dimension (1 + 3*N + 2*N*lg N + 3*N**2)
( lg( N ) = smallest integer k
such that 2^k >= N )
QSTORE QSTORE is COMPLEX*16 array, dimension (LDQS, N)
Used to store parts of
the eigenvector matrix when the updating matrix multiplies
take place.
LDQS LDQS is INTEGER
The leading dimension of the array QSTORE.
LDQS >= max(1,N).
INFO INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: December 2016 Definition at line 147 of file zlaed0.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 14,455 byte
man-zlaed0.3Build : 2024-12-29, 07:25 :
Visitor Screen : x
Visitor Counter ( page / site ) : 4 / 255,810
Visitor ID : :
Visitor IP : 3.15.15.91 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.