zlaed0.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK

NAMEzlaed0.f

SYNOPSIS

Functions/Subroutinessubroutine zlaed0 (QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK, INFO)
ZLAED0 used by sstedc​. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method​.

Function/Subroutine Documentation

subroutine zlaed0 (integer QSIZ, integer N, double precision, dimension( * ) D, double precision, dimension( * ) E, complex*16, dimension( ldq, * ) Q, integer LDQ, complex*16, dimension( ldqs, * ) QSTORE, integer LDQS, double precision, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer INFO)ZLAED0 used by sstedc​. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method​. Purpose: Using the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix.Parameters: QSIZ QSIZ is INTEGER The dimension of the unitary matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
N
N is INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0.
D
D is DOUBLE PRECISION array, dimension (N) On entry, the diagonal elements of the tridiagonal matrix. On exit, the eigenvalues in ascending order.
E
E is DOUBLE PRECISION array, dimension (N-1) On entry, the off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed.
Q
Q is COMPLEX*16 array, dimension (LDQ,N) On entry, Q must contain an QSIZ x N matrix whose columns unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix.
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= max(1,N).
IWORK
IWORK is INTEGER array, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg( N ) = smallest integer k such that 2^k >= N )
RWORK
RWORK is DOUBLE PRECISION array, dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N ) = smallest integer k such that 2^k >= N )
QSTORE
QSTORE is COMPLEX*16 array, dimension (LDQS, N) Used to store parts of the eigenvector matrix when the updating matrix multiplies take place.
LDQS
LDQS is INTEGER The leading dimension of the array QSTORE. LDQS >= max(1,N).
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).Author: Univ​. of Tennessee Univ​. of California Berkeley Univ​. of Colorado Denver NAG Ltd​. Date: December 2016 Definition at line 147 of file zlaed0​.f​.

AuthorGenerated automatically by Doxygen for LAPACK from the source code​.
0
Johanes Gumabo
Data Size   :   14,455 byte
man-zlaed0.3Build   :   2024-12-29, 07:25   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   4 / 255,810
Visitor ID   :     :  
Visitor IP   :   3.15.15.91   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.