zlagtm.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEzlagtm.f
SYNOPSIS
Functions/Subroutinessubroutine zlagtm (TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB)
ZLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.
Function/Subroutine Documentation
subroutine zlagtm (character TRANS, integer N, integer NRHS, double precision ALPHA, complex*16, dimension( * ) DL, complex*16, dimension( * ) D, complex*16, dimension( * ) DU, complex*16, dimension( ldx, * ) X, integer LDX, double precision BETA, complex*16, dimension( ldb, * ) B, integer LDB)ZLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1. Purpose: ZLAGTM performs a matrix-vector product of the form
B := alpha * A * X + beta * B
where A is a tridiagonal matrix of order N, B and X are N by NRHS
matrices, and alpha and beta are real scalars, each of which may be
0., 1., or -1.Parameters: TRANS TRANS is CHARACTER*1
Specifies the operation applied to A.
= 'N': No transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A**T * X + beta * B
= 'C': Conjugate transpose, B := alpha * A**H * X + beta * B
N N is INTEGER
The order of the matrix A. N >= 0.
NRHS NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices X and B.
ALPHA ALPHA is DOUBLE PRECISION
The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
it is assumed to be 0.
DL DL is COMPLEX*16 array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D D is COMPLEX*16 array, dimension (N)
The diagonal elements of T.
DU DU is COMPLEX*16 array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X X is COMPLEX*16 array, dimension (LDX,NRHS)
The N by NRHS matrix X.
LDX LDX is INTEGER
The leading dimension of the array X. LDX >= max(N,1).
BETA BETA is DOUBLE PRECISION
The scalar beta. BETA must be 0., 1., or -1.; otherwise,
it is assumed to be 1.
B B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B.
On exit, B is overwritten by the matrix expression
B := alpha * A * X + beta * B.
LDB LDB is INTEGER
The leading dimension of the array B. LDB >= max(N,1).Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: December 2016 Definition at line 147 of file zlagtm.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 14,145 byte
man-zlagtm.f.3Build : 2024-12-29, 07:25 :
Visitor Screen : x
Visitor Counter ( page / site ) : 3 / 256,100
Visitor ID : :
Visitor IP : 3.146.255.161 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.