zlalsa.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEzlalsa.f
SYNOPSIS
Functions/Subroutinessubroutine zlalsa (ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK, IWORK, INFO)
ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd.
Function/Subroutine Documentation
subroutine zlalsa (integer ICOMPQ, integer SMLSIZ, integer N, integer NRHS, complex*16, dimension( ldb, * ) B, integer LDB, complex*16, dimension( ldbx, * ) BX, integer LDBX, double precision, dimension( ldu, * ) U, integer LDU, double precision, dimension( ldu, * ) VT, integer, dimension( * ) K, double precision, dimension( ldu, * ) DIFL, double precision, dimension( ldu, * ) DIFR, double precision, dimension( ldu, * ) Z, double precision, dimension( ldu, * ) POLES, integer, dimension( * ) GIVPTR, integer, dimension( ldgcol, * ) GIVCOL, integer LDGCOL, integer, dimension( ldgcol, * ) PERM, double precision, dimension( ldu, * ) GIVNUM, double precision, dimension( * ) C, double precision, dimension( * ) S, double precision, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer INFO)ZLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. Purpose: ZLALSA is an itermediate step in solving the least squares problem
by computing the SVD of the coefficient matrix in compact form (The
singular vectors are computed as products of simple orthorgonal
matrices.).
If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector
matrix of an upper bidiagonal matrix to the right hand side; and if
ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the
right hand side. The singular vector matrices were generated in
compact form by ZLALSA.Parameters: ICOMPQ ICOMPQ is INTEGER
Specifies whether the left or the right singular vector
matrix is involved.
= 0: Left singular vector matrix
= 1: Right singular vector matrix
SMLSIZ SMLSIZ is INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
N N is INTEGER
The row and column dimensions of the upper bidiagonal matrix.
NRHS NRHS is INTEGER
The number of columns of B and BX. NRHS must be at least 1.
B B is COMPLEX*16 array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M.
On output, B contains the solution X in rows 1 through N.
LDB LDB is INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,MAX( M, N ) ).
BX BX is COMPLEX*16 array, dimension ( LDBX, NRHS )
On exit, the result of applying the left or right singular
vector matrix to B.
LDBX LDBX is INTEGER
The leading dimension of BX.
U U is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
On entry, U contains the left singular vector matrices of all
subproblems at the bottom level.
LDU LDU is INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR,
POLES, GIVNUM, and Z.
VT VT is DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
On entry, VT**H contains the right singular vector matrices of
all subproblems at the bottom level.
K K is INTEGER array, dimension ( N ).
DIFL DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
DIFR DIFR is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
distances between singular values on the I-th level and
singular values on the (I -1)-th level, and DIFR(*, 2 * I)
record the normalizing factors of the right singular vectors
matrices of subproblems on I-th level.
Z Z is DOUBLE PRECISION array, dimension ( LDU, NLVL ).
On entry, Z(1, I) contains the components of the deflation-
adjusted updating row vector for subproblems on the I-th
level.
POLES POLES is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
singular values involved in the secular equations on the I-th
level.
GIVPTR GIVPTR is INTEGER array, dimension ( N ).
On entry, GIVPTR( I ) records the number of Givens
rotations performed on the I-th problem on the computation
tree.
GIVCOL GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
locations of Givens rotations performed on the I-th level on
the computation tree.
LDGCOL LDGCOL is INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
PERM PERM is INTEGER array, dimension ( LDGCOL, NLVL ).
On entry, PERM(*, I) records permutations done on the I-th
level of the computation tree.
GIVNUM GIVNUM is DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
values of Givens rotations performed on the I-th level on the
computation tree.
C C is DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
S S is DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
S( I ) contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
RWORK RWORK is DOUBLE PRECISION array, dimension at least
MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ).
IWORK IWORK is INTEGER array, dimension (3*N)
INFO INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: June 2017 Contributors: Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
Definition at line 269 of file zlalsa.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 26,111 byte
man-zlalsa.3Build : 2024-12-29, 07:25 :
Visitor Screen : x
Visitor Counter ( page / site ) : 3 / 255,811
Visitor ID : :
Visitor IP : 3.15.15.91 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.