zlarrv.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEzlarrv.f
SYNOPSIS
Functions/Subroutinessubroutine zlarrv (N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL, DOU, MINRGP, RTOL1, RTOL2, W, WERR, WGAP, IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO)
ZLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
Function/Subroutine Documentation
subroutine zlarrv (integer N, double precision VL, double precision VU, double precision, dimension( * ) D, double precision, dimension( * ) L, double precision PIVMIN, integer, dimension( * ) ISPLIT, integer M, integer DOL, integer DOU, double precision MINRGP, double precision RTOL1, double precision RTOL2, double precision, dimension( * ) W, double precision, dimension( * ) WERR, double precision, dimension( * ) WGAP, integer, dimension( * ) IBLOCK, integer, dimension( * ) INDEXW, double precision, dimension( * ) GERS, complex*16, dimension( ldz, * ) Z, integer LDZ, integer, dimension( * ) ISUPPZ, double precision, dimension( * ) WORK, integer, dimension( * ) IWORK, integer INFO)ZLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT. Purpose: ZLARRV computes the eigenvectors of the tridiagonal matrix
T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
The input eigenvalues should have been computed by DLARRE.Parameters: N N is INTEGER
The order of the matrix. N >= 0.
VL VL is DOUBLE PRECISION
Lower bound of the interval that contains the desired
eigenvalues. VL < VU. Needed to compute gaps on the left or right
end of the extremal eigenvalues in the desired RANGE.
VU VU is DOUBLE PRECISION
Upper bound of the interval that contains the desired
eigenvalues. VL < VU. Needed to compute gaps on the left or right
end of the extremal eigenvalues in the desired RANGE.
D D is DOUBLE PRECISION array, dimension (N)
On entry, the N diagonal elements of the diagonal matrix D.
On exit, D may be overwritten.
L L is DOUBLE PRECISION array, dimension (N)
On entry, the (N-1) subdiagonal elements of the unit
bidiagonal matrix L are in elements 1 to N-1 of L
(if the matrix is not split.) At the end of each block
is stored the corresponding shift as given by DLARRE.
On exit, L is overwritten.
PIVMIN PIVMIN is DOUBLE PRECISION
The minimum pivot allowed in the Sturm sequence.
ISPLIT ISPLIT is INTEGER array, dimension (N)
The splitting points, at which T breaks up into blocks.
The first block consists of rows/columns 1 to
ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
through ISPLIT( 2 ), etc.
M M is INTEGER
The total number of input eigenvalues. 0 <= M <= N.
DOL DOL is INTEGER
DOU DOU is INTEGER
If the user wants to compute only selected eigenvectors from all
the eigenvalues supplied, he can specify an index range DOL:DOU.
Or else the setting DOL=1, DOU=M should be applied.
Note that DOL and DOU refer to the order in which the eigenvalues
are stored in W.
If the user wants to compute only selected eigenpairs, then
the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
computed eigenvectors. All other columns of Z are set to zero.
MINRGP MINRGP is DOUBLE PRECISION
RTOL1 RTOL1 is DOUBLE PRECISION
RTOL2 RTOL2 is DOUBLE PRECISION
Parameters for bisection.
An interval [LEFT,RIGHT] has converged if
RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
W W is DOUBLE PRECISION array, dimension (N)
The first M elements of W contain the APPROXIMATE eigenvalues for
which eigenvectors are to be computed. The eigenvalues
should be grouped by split-off block and ordered from
smallest to largest within the block ( The output array
W from DLARRE is expected here ). Furthermore, they are with
respect to the shift of the corresponding root representation
for their block. On exit, W holds the eigenvalues of the
UNshifted matrix.
WERR WERR is DOUBLE PRECISION array, dimension (N)
The first M elements contain the semiwidth of the uncertainty
interval of the corresponding eigenvalue in W
WGAP WGAP is DOUBLE PRECISION array, dimension (N)
The separation from the right neighbor eigenvalue in W.
IBLOCK IBLOCK is INTEGER array, dimension (N)
The indices of the blocks (submatrices) associated with the
corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
W(i) belongs to the first block from the top, =2 if W(i)
belongs to the second block, etc.
INDEXW INDEXW is INTEGER array, dimension (N)
The indices of the eigenvalues within each block (submatrix);
for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
GERS GERS is DOUBLE PRECISION array, dimension (2*N)
The N Gerschgorin intervals (the i-th Gerschgorin interval
is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
be computed from the original UNshifted matrix.
Z Z is COMPLEX*16 array, dimension (LDZ, max(1,M) )
If INFO = 0, the first M columns of Z contain the
orthonormal eigenvectors of the matrix T
corresponding to the input eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z.
LDZ LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
ISUPPZ ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The I-th eigenvector
is nonzero only in elements ISUPPZ( 2*I-1 ) through
ISUPPZ( 2*I ).
WORK WORK is DOUBLE PRECISION array, dimension (12*N)
IWORK IWORK is INTEGER array, dimension (7*N)
INFO INFO is INTEGER
= 0: successful exit
> 0: A problem occurred in ZLARRV.
< 0: One of the called subroutines signaled an internal problem.
Needs inspection of the corresponding parameter IINFO
for further information.
=-1: Problem in DLARRB when refining a child's eigenvalues.
=-2: Problem in DLARRF when computing the RRR of a child.
When a child is inside a tight cluster, it can be difficult
to find an RRR. A partial remedy from the user's point of
view is to make the parameter MINRGP smaller and recompile.
However, as the orthogonality of the computed vectors is
proportional to 1/MINRGP, the user should be aware that
he might be trading in precision when he decreases MINRGP.
=-3: Problem in DLARRB when refining a single eigenvalue
after the Rayleigh correction was rejected.
= 5: The Rayleigh Quotient Iteration failed to converge to
full accuracy in MAXITR steps.Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: June 2016 Contributors: Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA Definition at line 288 of file zlarrv.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 27,031 byte
man-zlarrv.3Build : 2024-12-29, 07:25 :
Visitor Screen : x
Visitor Counter ( page / site ) : 3 / 256,742
Visitor ID : :
Visitor IP : 3.143.7.112 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.