CTREVC - Online Linux Manual Page

Section : 1
Updated : November 2008
Source : LAPACK routine (version 3.2)
Note : LAPACK routine (version 3.2)

NAMECTREVC - computes some or all of the right and/or left eigenvectors of a complex upper triangular matrix T

SYNOPSISSUBROUTINE CTREVC(  SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO )  CHARACTER HOWMNY, SIDE  INTEGER INFO, LDT, LDVL, LDVR, M, MM, N  LOGICAL SELECT( * )  REAL RWORK( * )  COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), WORK( * )

PURPOSECTREVC computes some or all of the right and/or left eigenvectors of a complex upper triangular matrix T. Matrices of this type are produced by the Schur factorization of a complex general matrix: A = Q*T*Q**H, as computed by CHSEQR.
The right eigenvector x and the left eigenvector y of T corresponding to an eigenvalue w are defined by:


             T*x = w*x, (y**H)*T = w*(y**H)

where y**H denotes the conjugate transpose of the vector y. The eigenvalues are not input to this routine, but are read directly from the diagonal of T.

This routine returns the matrices X and/or Y of right and left eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an input matrix. If Q is the unitary factor that reduces a matrix A to Schur form T, then Q*X and Q*Y are the matrices of right and left eigenvectors of A.

ARGUMENTSSIDE (input) CHARACTER*1  = 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1  
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors, backtransformed using the matrices supplied in VR and/or VL; = 'S': compute selected right and/or left eigenvectors, as indicated by the logical array SELECT.
SELECT (input) LOGICAL array, dimension (N)  If HOWMNY = 'S', SELECT specifies the eigenvectors to be computed. The eigenvector corresponding to the j-th eigenvalue is computed if SELECT(j) = .TRUE.. Not referenced if HOWMNY = 'A' or 'B'. N (input) INTEGER  The order of the matrix T. N >= 0. T (input/output) COMPLEX array, dimension (LDT,N)  The upper triangular matrix T. T is modified, but restored on exit. LDT (input) INTEGER  The leading dimension of the array T. LDT >= max(1,N). VL (input/output) COMPLEX array, dimension (LDVL,MM)  On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must contain an N-by-N matrix Q (usually the unitary matrix Q of Schur vectors returned by CHSEQR). On exit, if SIDE = 'L' or 'B', VL contains: if HOWMNY = 'A', the matrix Y of left eigenvectors of T; if HOWMNY = 'B', the matrix Q*Y; if HOWMNY = 'S', the left eigenvectors of T specified by SELECT, stored consecutively in the columns of VL, in the same order as their eigenvalues. Not referenced if SIDE = 'R'. LDVL (input) INTEGER  The leading dimension of the array VL. LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N. VR (input/output) COMPLEX array, dimension (LDVR,MM)  On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must contain an N-by-N matrix Q (usually the unitary matrix Q of Schur vectors returned by CHSEQR). On exit, if SIDE = 'R' or 'B', VR contains: if HOWMNY = 'A', the matrix X of right eigenvectors of T; if HOWMNY = 'B', the matrix Q*X; if HOWMNY = 'S', the right eigenvectors of T specified by SELECT, stored consecutively in the columns of VR, in the same order as their eigenvalues. Not referenced if SIDE = 'L'. LDVR (input) INTEGER  The leading dimension of the array VR. LDVR >= 1, and if SIDE = 'R' or 'B'; LDVR >= N. MM (input) INTEGER  The number of columns in the arrays VL and/or VR. MM >= M. M (output) INTEGER  The number of columns in the arrays VL and/or VR actually used to store the eigenvectors. If HOWMNY = 'A' or 'B', M is set to N. Each selected eigenvector occupies one column. WORK (workspace) COMPLEX array, dimension (2*N)  RWORK (workspace) REAL array, dimension (N)  INFO (output) INTEGER  = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

FURTHER DETAILSThe algorithm used in this program is basically backward (forward) substitution, with scaling to make the the code robust against possible overflow.
Each eigenvector is normalized so that the element of largest magnitude has magnitude 1; here the magnitude of a complex number (x,y) is taken to be |x| + |y|.
0
Johanes Gumabo
Data Size   :   13,055 byte
man-ctrevc.lBuild   :   2025-03-22, 13:26   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   7 / 1,215,645
Visitor ID   :     :  
Visitor IP   :   18.219.224.246   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36


Very long time ago, I have the best tutor, Wenzel Svojanovsky. If someone knows the email address of Wenzel Svojanovsky, please send an email to johanesgumabo@gmail.com.
Help me, linux0001.com will expire on July 16, 2025. I have no money to renew it. View detail

If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.