dggsvp3.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK

NAMEdggsvp3.f

SYNOPSIS

Functions/Subroutinessubroutine dggsvp3 (JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, LWORK, INFO)
DGGSVP3

Function/Subroutine Documentation

subroutine dggsvp3 (character JOBU, character JOBV, character JOBQ, integer M, integer P, integer N, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( ldb, * ) B, integer LDB, double precision TOLA, double precision TOLB, integer K, integer L, double precision, dimension( ldu, * ) U, integer LDU, double precision, dimension( ldv, * ) V, integer LDV, double precision, dimension( ldq, * ) Q, integer LDQ, integer, dimension( * ) IWORK, double precision, dimension( * ) TAU, double precision, dimension( * ) WORK, integer LWORK, integer INFO)DGGSVP3 Purpose: DGGSVP3 computes orthogonal matrices U, V and Q such that N-K-L K L U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; L ( 0 0 A23 ) M-K-L ( 0 0 0 ) N-K-L K L = K ( 0 A12 A13 ) if M-K-L < 0; M-K ( 0 0 A23 ) N-K-L K L V**T*B*Q = L ( 0 0 B13 ) P-L ( 0 0 0 ) where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T. This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see subroutine DGGSVD3.Parameters: JOBU JOBU is CHARACTER*1 = 'U': Orthogonal matrix U is computed; = 'N': U is not computed.
JOBV
JOBV is CHARACTER*1 = 'V': Orthogonal matrix V is computed; = 'N': V is not computed.
JOBQ
JOBQ is CHARACTER*1 = 'Q': Orthogonal matrix Q is computed; = 'N': Q is not computed.
M
M is INTEGER The number of rows of the matrix A. M >= 0.
P
P is INTEGER The number of rows of the matrix B. P >= 0.
N
N is INTEGER The number of columns of the matrices A and B. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A contains the triangular (or trapezoidal) matrix described in the Purpose section.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
B
B is DOUBLE PRECISION array, dimension (LDB,N) On entry, the P-by-N matrix B. On exit, B contains the triangular matrix described in the Purpose section.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,P).
TOLA
TOLA is DOUBLE PRECISION
TOLB
TOLB is DOUBLE PRECISION TOLA and TOLB are the thresholds to determine the effective numerical rank of matrix B and a subblock of A. Generally, they are set to TOLA = MAX(M,N)*norm(A)*MACHEPS, TOLB = MAX(P,N)*norm(B)*MACHEPS. The size of TOLA and TOLB may affect the size of backward errors of the decomposition.
K
K is INTEGER
L
L is INTEGER On exit, K and L specify the dimension of the subblocks described in Purpose section. K + L = effective numerical rank of (A**T,B**T)**T.
U
U is DOUBLE PRECISION array, dimension (LDU,M) If JOBU = 'U', U contains the orthogonal matrix U. If JOBU = 'N', U is not referenced.
LDU
LDU is INTEGER The leading dimension of the array U. LDU >= max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.
V
V is DOUBLE PRECISION array, dimension (LDV,P) If JOBV = 'V', V contains the orthogonal matrix V. If JOBV = 'N', V is not referenced.
LDV
LDV is INTEGER The leading dimension of the array V. LDV >= max(1,P) if JOBV = 'V'; LDV >= 1 otherwise.
Q
Q is DOUBLE PRECISION array, dimension (LDQ,N) If JOBQ = 'Q', Q contains the orthogonal matrix Q. If JOBQ = 'N', Q is not referenced.
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= max(1,N) if JOBQ = 'Q'; LDQ >= 1 otherwise.
IWORK
IWORK is INTEGER array, dimension (N)
TAU
TAU is DOUBLE PRECISION array, dimension (N)
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value.Author: Univ​. of Tennessee Univ​. of California Berkeley Univ​. of Colorado Denver NAG Ltd​. Date: August 2015 Further Details: The subroutine uses LAPACK subroutine DGEQP3 for the QR factorization with column pivoting to detect the effective numerical rank of the a matrix. It may be replaced by a better rank determination strategy. DGGSVP3 replaces the deprecated subroutine DGGSVP.Definition at line 274 of file dggsvp3​.f​.

AuthorGenerated automatically by Doxygen for LAPACK from the source code​.
0
Johanes Gumabo
Data Size   :   24,863 byte
man-dggsvp3.f.3Build   :   2024-12-05, 20:55   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   2 / 184,263
Visitor ID   :     :  
Visitor IP   :   18.218.123.194   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   10   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.