DGTCON - Online Linux Manual Page

Section : 1
Updated : November 2008
Source : LAPACK routine (version 3.2)
Note : LAPACK routine (version 3.2)

NAMEDGTCON - estimates the reciprocal of the condition number of a real tridiagonal matrix A using the LU factorization as computed by DGTTRF

SYNOPSISSUBROUTINE DGTCON(  NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND, WORK, IWORK, INFO )  CHARACTER NORM  INTEGER INFO, N  DOUBLE PRECISION ANORM, RCOND  INTEGER IPIV( * ), IWORK( * )  DOUBLE PRECISION D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )

PURPOSEDGTCON estimates the reciprocal of the condition number of a real tridiagonal matrix A using the LU factorization as computed by DGTTRF. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).

ARGUMENTSNORM (input) CHARACTER*1  Specifies whether the 1-norm condition number or the infinity-norm condition number is required:
= '1' or 'O': 1-norm;
= 'I': Infinity-norm.
N (input) INTEGER  The order of the matrix A. N >= 0. DL (input) DOUBLE PRECISION array, dimension (N-1)  The (n-1) multipliers that define the matrix L from the LU factorization of A as computed by DGTTRF. D (input) DOUBLE PRECISION array, dimension (N)  The n diagonal elements of the upper triangular matrix U from the LU factorization of A. DU (input) DOUBLE PRECISION array, dimension (N-1)  The (n-1) elements of the first superdiagonal of U. DU2 (input) DOUBLE PRECISION array, dimension (N-2)  The (n-2) elements of the second superdiagonal of U. IPIV (input) INTEGER array, dimension (N)  The pivot indices; for 1 <= i <= n, row i of the matrix was interchanged with row IPIV(i). IPIV(i) will always be either i or i+1; IPIV(i) = i indicates a row interchange was not required. ANORM (input) DOUBLE PRECISION  If NORM = '1' or 'O', the 1-norm of the original matrix A. If NORM = 'I', the infinity-norm of the original matrix A. RCOND (output) DOUBLE PRECISION  The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine. WORK (workspace) DOUBLE PRECISION array, dimension (2*N)  IWORK (workspace) INTEGER array, dimension (N)  INFO (output) INTEGER  = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
0
Johanes Gumabo
Data Size   :   9,814 byte
man-dgtcon.lBuild   :   2025-03-22, 13:26   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   2 / 1,383,893
Visitor ID   :     :  
Visitor IP   :   3.142.142.113   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   37.751000 x -97.822000   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :     :  
Provider Province   :   ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36


Very long time ago, I have the best tutor, Wenzel Svojanovsky. If someone knows the email address of Wenzel Svojanovsky, please send an email to johanesgumabo@gmail.com.
Help me, linux0001.com will expire on July 16, 2025. I have no money to renew it. View detail

If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.