dlasd0.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK

NAMEdlasd0.f

SYNOPSIS

Functions/Subroutinessubroutine dlasd0 (N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK, WORK, INFO)
DLASD0 computes the singular values of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e​. Used by sbdsdc​.

Function/Subroutine Documentation

subroutine dlasd0 (integer N, integer SQRE, double precision, dimension( * ) D, double precision, dimension( * ) E, double precision, dimension( ldu, * ) U, integer LDU, double precision, dimension( ldvt, * ) VT, integer LDVT, integer SMLSIZ, integer, dimension( * ) IWORK, double precision, dimension( * ) WORK, integer INFO)DLASD0 computes the singular values of a real upper bidiagonal n-by-m matrix B with diagonal d and off-diagonal e​. Used by sbdsdc​. Purpose: Using a divide and conquer approach, DLASD0 computes the singular value decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with diagonal D and offdiagonal E, where M = N + SQRE. The algorithm computes orthogonal matrices U and VT such that B = U * S * VT. The singular values S are overwritten on D. A related subroutine, DLASDA, computes only the singular values, and optionally, the singular vectors in compact form.Parameters: N N is INTEGER On entry, the row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array D.
SQRE
SQRE is INTEGER Specifies the column dimension of the bidiagonal matrix. = 0: The bidiagonal matrix has column dimension M = N; = 1: The bidiagonal matrix has column dimension M = N+1;
D
D is DOUBLE PRECISION array, dimension (N) On entry D contains the main diagonal of the bidiagonal matrix. On exit D, if INFO = 0, contains its singular values.
E
E is DOUBLE PRECISION array, dimension (M-1) Contains the subdiagonal entries of the bidiagonal matrix. On exit, E has been destroyed.
U
U is DOUBLE PRECISION array, dimension (LDU, N) On exit, U contains the left singular vectors.
LDU
LDU is INTEGER On entry, leading dimension of U.
VT
VT is DOUBLE PRECISION array, dimension (LDVT, M) On exit, VT**T contains the right singular vectors.
LDVT
LDVT is INTEGER On entry, leading dimension of VT.
SMLSIZ
SMLSIZ is INTEGER On entry, maximum size of the subproblems at the bottom of the computation tree.
IWORK
IWORK is INTEGER array, dimension (8*N)
WORK
WORK is DOUBLE PRECISION array, dimension (3*M**2+2*M)
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, a singular value did not convergeAuthor: Univ​. of Tennessee Univ​. of California Berkeley Univ​. of Colorado Denver NAG Ltd​. Date: June 2017 Contributors: Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA Definition at line 152 of file dlasd0​.f​.

AuthorGenerated automatically by Doxygen for LAPACK from the source code​.
0
Johanes Gumabo
Data Size   :   14,505 byte
man-dlasd0.3Build   :   2024-12-05, 20:55   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   2 / 187,054
Visitor ID   :     :  
Visitor IP   :   18.227.134.95   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.