dlasd4.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEdlasd4.f
SYNOPSIS
Functions/Subroutinessubroutine dlasd4 (N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO)
DLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by dbdsdc.
Function/Subroutine Documentation
subroutine dlasd4 (integer N, integer I, double precision, dimension( * ) D, double precision, dimension( * ) Z, double precision, dimension( * ) DELTA, double precision RHO, double precision SIGMA, double precision, dimension( * ) WORK, integer INFO)DLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by dbdsdc. Purpose: This subroutine computes the square root of the I-th updated
eigenvalue of a positive symmetric rank-one modification to
a positive diagonal matrix whose entries are given as the squares
of the corresponding entries in the array d, and that
0 <= D(i) < D(j) for i < j
and that RHO > 0. This is arranged by the calling routine, and is
no loss in generality. The rank-one modified system is thus
diag( D ) * diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the
secular equation by simpler interpolating rational functions.Parameters: N N is INTEGER
The length of all arrays.
I I is INTEGER
The index of the eigenvalue to be computed. 1 <= I <= N.
D D is DOUBLE PRECISION array, dimension ( N )
The original eigenvalues. It is assumed that they are in
order, 0 <= D(I) < D(J) for I < J.
Z Z is DOUBLE PRECISION array, dimension ( N )
The components of the updating vector.
DELTA DELTA is DOUBLE PRECISION array, dimension ( N )
If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th
component. If N = 1, then DELTA(1) = 1. The vector DELTA
contains the information necessary to construct the
(singular) eigenvectors.
RHO RHO is DOUBLE PRECISION
The scalar in the symmetric updating formula.
SIGMA SIGMA is DOUBLE PRECISION
The computed sigma_I, the I-th updated eigenvalue.
WORK WORK is DOUBLE PRECISION array, dimension ( N )
If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th
component. If N = 1, then WORK( 1 ) = 1.
INFO INFO is INTEGER
= 0: successful exit
> 0: if INFO = 1, the updating process failed.Internal Parameters: Logical variable ORGATI (origin-at-i?) is used for distinguishing
whether D(i) or D(i+1) is treated as the origin.
ORGATI = .true. origin at i
ORGATI = .false. origin at i+1
Logical variable SWTCH3 (switch-for-3-poles?) is for noting
if we are working with THREE poles!
MAXIT is the maximum number of iterations allowed for each
eigenvalue.Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: December 2016 Contributors: Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Definition at line 155 of file dlasd4.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 14,948 byte
man-dlasd4.3Build : 2024-12-05, 20:55 :
Visitor Screen : x
Visitor Counter ( page / site ) : 2 / 183,913
Visitor ID : :
Visitor IP : 18.117.192.205 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.