DLASD4 - Online Linux Manual PageSection : 1
Updated : November 2008
Source : LAPACK auxiliary routine (version 3.2)
Note : LAPACK auxiliary routine (version 3.2)

NAMEDLASD4 - subroutine compute the square root of the I-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix whose entries are given as the squares of the corresponding entries in the array d, and that 0 <= D(i) < D(j) for i < j and that RHO > 0

SYNOPSISSUBROUTINE DLASD4(  N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO )  INTEGER I, INFO, N  DOUBLE PRECISION RHO, SIGMA  DOUBLE PRECISION D( * ), DELTA( * ), WORK( * ), Z( * )

PURPOSEThis subroutine computes the square root of the I-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix whose entries are given as the squares of the corresponding entries in the array d, and that no loss in generality. The rank-one modified system is thus
       diag( D ) * diag( D ) + RHO * Z * Z_transpose.
where we assume the Euclidean norm of Z is 1.
The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.

ARGUMENTSN (input) INTEGER  The length of all arrays. I (input) INTEGER  The index of the eigenvalue to be computed. 1 <= I <= N. D (input) DOUBLE PRECISION array, dimension ( N )  The original eigenvalues. It is assumed that they are in order, 0 <= D(I) < D(J) for I < J. Z (input) DOUBLE PRECISION array, dimension ( N )  The components of the updating vector. DELTA (output) DOUBLE PRECISION array, dimension ( N )  If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th component. If N = 1, then DELTA(1) = 1. The vector DELTA contains the information necessary to construct the (singular) eigenvectors. RHO (input) DOUBLE PRECISION  The scalar in the symmetric updating formula. SIGMA (output) DOUBLE PRECISION  The computed sigma_I, the I-th updated eigenvalue. WORK (workspace) DOUBLE PRECISION array, dimension ( N )  If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th component. If N = 1, then WORK( 1 ) = 1. INFO (output) INTEGER  = 0: successful exit
> 0: if INFO = 1, the updating process failed.

PARAMETERSLogical variable ORGATI (origin-at-i?) is used for distinguishing whether D(i) or D(i+1) is treated as the origin. ORGATI = .true. origin at i ORGATI = .false. origin at i+1 Logical variable SWTCH3 (switch-for-3-poles?) is for noting if we are working with THREE poles! MAXIT is the maximum number of iterations allowed for each eigenvalue. Further Details =============== Based on contributions by Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
0
Johanes Gumabo
Data Size   :   8,923 byte
man-dlasd4.lBuild   :   2024-12-05, 20:55   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   2 / 183,650
Visitor ID   :     :  
Visitor IP   :   3.145.108.87   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.