dlasv2.f - Online Linux Manual Page
Section : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEdlasv2.f
SYNOPSIS
Functions/Subroutinessubroutine dlasv2 (F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL)
DLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix.
Function/Subroutine Documentation
subroutine dlasv2 (double precision F, double precision G, double precision H, double precision SSMIN, double precision SSMAX, double precision SNR, double precision CSR, double precision SNL, double precision CSL)DLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix. Purpose: DLASV2 computes the singular value decomposition of a 2-by-2
triangular matrix
[ F G ]
[ 0 H ].
On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
right singular vectors for abs(SSMAX), giving the decomposition
[ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ]
[-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ].Parameters: F F is DOUBLE PRECISION
The (1,1) element of the 2-by-2 matrix.
G G is DOUBLE PRECISION
The (1,2) element of the 2-by-2 matrix.
H H is DOUBLE PRECISION
The (2,2) element of the 2-by-2 matrix.
SSMIN SSMIN is DOUBLE PRECISION
abs(SSMIN) is the smaller singular value.
SSMAX SSMAX is DOUBLE PRECISION
abs(SSMAX) is the larger singular value.
SNL SNL is DOUBLE PRECISION
CSL CSL is DOUBLE PRECISION
The vector (CSL, SNL) is a unit left singular vector for the
singular value abs(SSMAX).
SNR SNR is DOUBLE PRECISION
CSR CSR is DOUBLE PRECISION
The vector (CSR, SNR) is a unit right singular vector for the
singular value abs(SSMAX).Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: December 2016 Further Details: Any input parameter may be aliased with any output parameter.
Barring over/underflow and assuming a guard digit in subtraction, all
output quantities are correct to within a few units in the last
place (ulps).
In IEEE arithmetic, the code works correctly if one matrix element is
infinite.
Overflow will not occur unless the largest singular value itself
overflows or is within a few ulps of overflow. (On machines with
partial overflow, like the Cray, overflow may occur if the largest
singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results
may correspond to a matrix modified by perturbations of size near
the underflow threshold.Definition at line 140 of file dlasv2.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 13,622 byte
man-dlasv2.3Build : 2025-03-22, 13:26 :
Visitor Screen : x
Visitor Counter ( page / site ) : 4 / 2,337,730
Visitor ID : :
Visitor IP : 216.73.216.115 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 20 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.