std::gamma_distribution - Online Linux Manual PageSection : 3
Updated : 19 Jun 2018
Source : libstdc++

NAMEstd::gamma_distribution − A gamma continuous distribution for random numbers.

SYNOPSIS

Public Typestypedef _RealType input_type
typedef _RealType result_type

Public Member Functions_RealType alpha () const
gamma_distribution (const result_type &__alpha_val=result_type(1))
template<class _UniformRandomNumberGenerator > result_type operator() (_UniformRandomNumberGenerator &__urng)
void reset ()

Friendstemplate<typename _RealType1 , typename _CharT , typename _Traits > std::basic_ostream< _CharT, _Traits > & operator<< (std::basic_ostream< _CharT, _Traits > &__os, const gamma_distribution< _RealType1 > &__x)
template<typename _CharT , typename _Traits > std::basic_istream< _CharT, _Traits > & operator>> (std::basic_istream< _CharT, _Traits > &__is, gamma_distribution &__x)

Detailed Description

template<typename _RealType = double> class std::gamma_distribution< _RealType >A gamma continuous distribution for random numbers. The formula for the gamma probability mass function is $ p(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} $. Definition at line 2320 of file tr1_impl/random.

Constructor & Destructor Documentation

template<typename _RealType = double> std::gamma_distribution< _RealType >::gamma_distribution (const result_type & __alpha_val = result_type(1)) [inline, explicit] Constructs a gamma distribution with parameters $ \alpha $.Definition at line 2332 of file tr1_impl/random.

Member Function Documentation

template<typename _RealType = double> _RealType std::gamma_distribution< _RealType >::alpha () const [inline] Gets the $ \alpha $ of the distribution.Definition at line 2343 of file tr1_impl/random.

template<typename _RealType > template<class _UniformRandomNumberGenerator > gamma_distribution< _RealType >::result_type std::gamma_distribution< _RealType >::operator() (_UniformRandomNumberGenerator & __urng) [inline] Cheng's rejection algorithm GB for alpha >= 1 and a modification of Vaduva's rejection from Weibull algorithm due to Devroye for alpha < 1.References: Cheng, R. C. 'The Generation of Gamma Random Variables with Non-integral
 Shape Parameter.' Applied Statistics, 26, 71-75, 1977.
Vaduva, I. 'Computer Generation of Gamma Gandom Variables by Rejection
 and Composition Procedures.' Math. Operationsforschung and Statistik, Series in Statistics, 8, 545-576, 1977.
Devroye, L. 'Non-Uniform Random Variates Generation.' Springer-Verlag, New York, 1986, Ch. IX, Sect. 3.4 (+ Errata!). Definition at line 1501 of file random.tcc. References std::exp(), std::log(), and std::pow().

template<typename _RealType = double> void std::gamma_distribution< _RealType >::reset () [inline] Resets the distribution.Definition at line 2350 of file tr1_impl/random.

Friends And Related Function Documentation

template<typename _RealType = double> template<typename _RealType1 , typename _CharT , typename _Traits > std::basic_ostream<_CharT, _Traits>& operator<< (std::basic_ostream< _CharT, _Traits > & __os, const gamma_distribution< _RealType1 > & __x) [friend] Inserts a gamma_distribution random number distribution __x into the output stream __os.Parameters: __os An output stream.
__x A gamma_distribution random number distribution.
Returns: The output stream with the state of __x inserted or in an error state.

template<typename _RealType = double> template<typename _CharT , typename _Traits > std::basic_istream<_CharT, _Traits>& operator>> (std::basic_istream< _CharT, _Traits > & __is, gamma_distribution< _RealType > & __x) [friend] Extracts a gamma_distribution random number distribution __x from the input stream __is.Parameters: __is An input stream.
__x A gamma_distribution random number generator engine.
Returns: The input stream with __x extracted or in an error state. Definition at line 2382 of file tr1_impl/random.

AuthorGenerated automatically by Doxygen for libstdc++ from the source code.
0
Johanes Gumabo
Data Size   :   20,338 byte
man-std::gamma_distribution.3Build   :   2024-12-05, 20:55   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   2 / 238,046
Visitor ID   :     :  
Visitor IP   :   3.12.76.168   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.

ERROR : Need New Coding :         (rof_escape_sequence|91|std::gamma_distribution.3|54|\frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} $. |The formula for the gamma probability mass function is $ p(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} $. )         (rof_escape_sequence|91|std::gamma_distribution.3|59|\alpha $. |.SS "template \fBstd::gamma_distribution\fP< _RealType >::\fBgamma_distribution\fP (const result_type & __alpha_val = \fCresult_type(1)\fP)\fC [inline, explicit]\fP"Constructs a gamma distribution with parameters $ \alpha $. )         (rof_escape_sequence|91|std::gamma_distribution.3|64|\alpha $ of the distribution. |.SS "template _RealType \fBstd::gamma_distribution\fP< _RealType >::alpha () const\fC [inline]\fP"Gets the $ \alpha $ of the distribution. )