zgelqt3.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEzgelqt3.f
SYNOPSIS
Functions/Subroutinesrecursive subroutine zgelqt3 (M, N, A, LDA, T, LDT, INFO)
ZGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact WY representation of Q.
Function/Subroutine Documentation
recursive subroutine zgelqt3 (integer M, integer N, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( ldt, * ) T, integer LDT, integer INFO)ZGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact WY representation of Q. Purpose: DGELQT3 recursively computes a LQ factorization of a complex M-by-N
matrix A, using the compact WY representation of Q.
Based on the algorithm of Elmroth and Gustavson,
IBM J. Res. Develop. Vol 44 No. 4 July 2000.Parameters: M M is INTEGER
The number of rows of the matrix A. M =< N.
N N is INTEGER
The number of columns of the matrix A. N >= 0.
A A is COMPLEX*16 array, dimension (LDA,N)
On entry, the real M-by-N matrix A. On exit, the elements on and
below the diagonal contain the N-by-N lower triangular matrix L; the
elements above the diagonal are the rows of V. See below for
further details.
LDA LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
T T is COMPLEX*16 array, dimension (LDT,N)
The N-by-N upper triangular factor of the block reflector.
The elements on and above the diagonal contain the block
reflector T; the elements below the diagonal are not used.
See below for further details.
LDT LDT is INTEGER
The leading dimension of the array T. LDT >= max(1,N).
INFO INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal valueAuthor: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2017 Further Details: The matrix V stores the elementary reflectors H(i) in the i-th row
above the diagonal. For example, if M=5 and N=3, the matrix V is
V = ( 1 v1 v1 v1 v1 )
( 1 v2 v2 v2 )
( 1 v3 v3 v3 )
where the vi's represent the vectors which define H(i), which are returned
in the matrix A. The 1's along the diagonal of V are not stored in A. The
block reflector H is then given by
H = I - V * T * V**T
where V**T is the transpose of V.
For details of the algorithm, see Elmroth and Gustavson (cited above).Definition at line 133 of file zgelqt3.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 12,446 byte
man-zgelqt3.3Build : 2024-12-05, 20:55 :
Visitor Screen : x
Visitor Counter ( page / site ) : 4 / 170,379
Visitor ID : :
Visitor IP : 18.119.19.206 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.