ZGGEV - Online Linux Manual PageSection : 1
Updated : November 2008
Source : LAPACK driver routine (version 3.2)
Note : LAPACK driver routine (version 3.2)

NAMEZGGEV - computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors

SYNOPSISSUBROUTINE ZGGEV(  JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO )  CHARACTER JOBVL, JOBVR  INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N  DOUBLE PRECISION RWORK( * )  COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), BETA( * ), VL( LDVL, * ), VR( LDVR, * ), WORK( * )

PURPOSEZGGEV computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero.
The right generalized eigenvector v(j) corresponding to the generalized eigenvalue lambda(j) of (A,B) satisfies

             A * v(j) = lambda(j) * B * v(j).
The left generalized eigenvector u(j) corresponding to the generalized eigenvalues lambda(j) of (A,B) satisfies

             u(j)**H * A = lambda(j) * u(j)**H * B
where u(j)**H is the conjugate-transpose of u(j).

ARGUMENTSJOBVL (input) CHARACTER*1  = 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.
JOBVR (input) CHARACTER*1  
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.
N (input) INTEGER  The order of the matrices A, B, VL, and VR. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA, N)  On entry, the matrix A in the pair (A,B). On exit, A has been overwritten. LDA (input) INTEGER  The leading dimension of A. LDA >= max(1,N). B (input/output) COMPLEX*16 array, dimension (LDB, N)  On entry, the matrix B in the pair (A,B). On exit, B has been overwritten. LDB (input) INTEGER  The leading dimension of B. LDB >= max(1,N). ALPHA (output) COMPLEX*16 array, dimension (N)  BETA (output) COMPLEX*16 array, dimension (N) On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized eigenvalues. Note: the quotients ALPHA(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio alpha/beta. However, ALPHA will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B). VL (output) COMPLEX*16 array, dimension (LDVL,N)  If JOBVL = 'V', the left generalized eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. Each eigenvector is scaled so the largest component has abs(real part) + abs(imag. part) = 1. Not referenced if JOBVL = 'N'. LDVL (input) INTEGER  The leading dimension of the matrix VL. LDVL >= 1, and if JOBVL = 'V', LDVL >= N. VR (output) COMPLEX*16 array, dimension (LDVR,N)  If JOBVR = 'V', the right generalized eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. Each eigenvector is scaled so the largest component has abs(real part) + abs(imag. part) = 1. Not referenced if JOBVR = 'N'. LDVR (input) INTEGER  The leading dimension of the matrix VR. LDVR >= 1, and if JOBVR = 'V', LDVR >= N. WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))  On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER  The dimension of the array WORK. LWORK >= max(1,2*N). For good performance, LWORK must generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. RWORK (workspace/output) DOUBLE PRECISION array, dimension (8*N)  INFO (output) INTEGER  = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=1,...,N: The QZ iteration failed. No eigenvectors have been calculated, but ALPHA(j) and BETA(j) should be correct for j=INFO+1,...,N. > N: =N+1: other then QZ iteration failed in DHGEQZ,
=N+2: error return from DTGEVC.
0
Johanes Gumabo
Data Size   :   14,281 byte
man-zggev.lBuild   :   2024-12-29, 07:25   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   3 / 257,020
Visitor ID   :     :  
Visitor IP   :   3.129.249.240   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.