zgghrd.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEzgghrd.f
SYNOPSIS
Functions/Subroutinessubroutine zgghrd (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO)
ZGGHRD
Function/Subroutine Documentation
subroutine zgghrd (character COMPQ, character COMPZ, integer N, integer ILO, integer IHI, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( ldb, * ) B, integer LDB, complex*16, dimension( ldq, * ) Q, integer LDQ, complex*16, dimension( ldz, * ) Z, integer LDZ, integer INFO)ZGGHRD Purpose: ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper
Hessenberg form using unitary transformations, where A is a
general matrix and B is upper triangular. The form of the
generalized eigenvalue problem is
A*x = lambda*B*x,
and B is typically made upper triangular by computing its QR
factorization and moving the unitary matrix Q to the left side
of the equation.
This subroutine simultaneously reduces A to a Hessenberg matrix H:
Q**H*A*Z = H
and transforms B to another upper triangular matrix T:
Q**H*B*Z = T
in order to reduce the problem to its standard form
H*y = lambda*T*y
where y = Z**H*x.
The unitary matrices Q and Z are determined as products of Givens
rotations. They may either be formed explicitly, or they may be
postmultiplied into input matrices Q1 and Z1, so that
Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H
Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H
If Q1 is the unitary matrix from the QR factorization of B in the
original equation A*x = lambda*B*x, then ZGGHRD reduces the original
problem to generalized Hessenberg form.Parameters: COMPQ COMPQ is CHARACTER*1
= 'N': do not compute Q;
= 'I': Q is initialized to the unit matrix, and the
unitary matrix Q is returned;
= 'V': Q must contain a unitary matrix Q1 on entry,
and the product Q1*Q is returned.
COMPZ COMPZ is CHARACTER*1
= 'N': do not compute Z;
= 'I': Z is initialized to the unit matrix, and the
unitary matrix Z is returned;
= 'V': Z must contain a unitary matrix Z1 on entry,
and the product Z1*Z is returned.
N N is INTEGER
The order of the matrices A and B. N >= 0.
ILO ILO is INTEGER
IHI IHI is INTEGER
ILO and IHI mark the rows and columns of A which are to be
reduced. It is assumed that A is already upper triangular
in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are
normally set by a previous call to ZGGBAL; otherwise they
should be set to 1 and N respectively.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A A is COMPLEX*16 array, dimension (LDA, N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
rest is set to zero.
LDA LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B B is COMPLEX*16 array, dimension (LDB, N)
On entry, the N-by-N upper triangular matrix B.
On exit, the upper triangular matrix T = Q**H B Z. The
elements below the diagonal are set to zero.
LDB LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q Q is COMPLEX*16 array, dimension (LDQ, N)
On entry, if COMPQ = 'V', the unitary matrix Q1, typically
from the QR factorization of B.
On exit, if COMPQ='I', the unitary matrix Q, and if
COMPQ = 'V', the product Q1*Q.
Not referenced if COMPQ='N'.
LDQ LDQ is INTEGER
The leading dimension of the array Q.
LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
Z Z is COMPLEX*16 array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the unitary matrix Z1.
On exit, if COMPZ='I', the unitary matrix Z, and if
COMPZ = 'V', the product Z1*Z.
Not referenced if COMPZ='N'.
LDZ LDZ is INTEGER
The leading dimension of the array Z.
LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
INFO INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: December 2016 Further Details: This routine reduces A to Hessenberg and B to triangular form by
an unblocked reduction, as described in _Matrix_Computations_,
by Golub and van Loan (Johns Hopkins Press).Definition at line 206 of file zgghrd.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 18,503 byte
man-zgghrd.3Build : 2024-12-29, 07:25 :
Visitor Screen : x
Visitor Counter ( page / site ) : 3 / 256,139
Visitor ID : :
Visitor IP : 3.137.181.194 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.