zgghrd.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK

NAMEzgghrd.f

SYNOPSIS

Functions/Subroutinessubroutine zgghrd (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO)
ZGGHRD

Function/Subroutine Documentation

subroutine zgghrd (character COMPQ, character COMPZ, integer N, integer ILO, integer IHI, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( ldb, * ) B, integer LDB, complex*16, dimension( ldq, * ) Q, integer LDQ, complex*16, dimension( ldz, * ) Z, integer LDZ, integer INFO)ZGGHRD Purpose: ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper Hessenberg form using unitary transformations, where A is a general matrix and B is upper triangular. The form of the generalized eigenvalue problem is A*x = lambda*B*x, and B is typically made upper triangular by computing its QR factorization and moving the unitary matrix Q to the left side of the equation. This subroutine simultaneously reduces A to a Hessenberg matrix H: Q**H*A*Z = H and transforms B to another upper triangular matrix T: Q**H*B*Z = T in order to reduce the problem to its standard form H*y = lambda*T*y where y = Z**H*x. The unitary matrices Q and Z are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices Q1 and Z1, so that Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H If Q1 is the unitary matrix from the QR factorization of B in the original equation A*x = lambda*B*x, then ZGGHRD reduces the original problem to generalized Hessenberg form.Parameters: COMPQ COMPQ is CHARACTER*1 = 'N': do not compute Q; = 'I': Q is initialized to the unit matrix, and the unitary matrix Q is returned; = 'V': Q must contain a unitary matrix Q1 on entry, and the product Q1*Q is returned.
COMPZ
COMPZ is CHARACTER*1 = 'N': do not compute Z; = 'I': Z is initialized to the unit matrix, and the unitary matrix Z is returned; = 'V': Z must contain a unitary matrix Z1 on entry, and the product Z1*Z is returned.
N
N is INTEGER The order of the matrices A and B. N >= 0.
ILO
ILO is INTEGER
IHI
IHI is INTEGER ILO and IHI mark the rows and columns of A which are to be reduced. It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to ZGGBAL; otherwise they should be set to 1 and N respectively. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A
A is COMPLEX*16 array, dimension (LDA, N) On entry, the N-by-N general matrix to be reduced. On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H, and the rest is set to zero.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).
B
B is COMPLEX*16 array, dimension (LDB, N) On entry, the N-by-N upper triangular matrix B. On exit, the upper triangular matrix T = Q**H B Z. The elements below the diagonal are set to zero.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).
Q
Q is COMPLEX*16 array, dimension (LDQ, N) On entry, if COMPQ = 'V', the unitary matrix Q1, typically from the QR factorization of B. On exit, if COMPQ='I', the unitary matrix Q, and if COMPQ = 'V', the product Q1*Q. Not referenced if COMPQ='N'.
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
Z
Z is COMPLEX*16 array, dimension (LDZ, N) On entry, if COMPZ = 'V', the unitary matrix Z1. On exit, if COMPZ='I', the unitary matrix Z, and if COMPZ = 'V', the product Z1*Z. Not referenced if COMPZ='N'.
LDZ
LDZ is INTEGER The leading dimension of the array Z. LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.Author: Univ​. of Tennessee Univ​. of California Berkeley Univ​. of Colorado Denver NAG Ltd​. Date: December 2016 Further Details: This routine reduces A to Hessenberg and B to triangular form by an unblocked reduction, as described in _Matrix_Computations_, by Golub and van Loan (Johns Hopkins Press).Definition at line 206 of file zgghrd​.f​.

AuthorGenerated automatically by Doxygen for LAPACK from the source code​.
0
Johanes Gumabo
Data Size   :   18,503 byte
man-zgghrd.3Build   :   2024-12-29, 07:25   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   3 / 256,139
Visitor ID   :     :  
Visitor IP   :   3.137.181.194   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.