ZHETD2 - Online Linux Manual PageSection : 1
Updated : November 2008
Source : LAPACK routine (version 3.2)
Note : LAPACK routine (version 3.2)

NAMEZHETD2 - reduces a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity transformation

SYNOPSISSUBROUTINE ZHETD2(  UPLO, N, A, LDA, D, E, TAU, INFO )  CHARACTER UPLO  INTEGER INFO, LDA, N  DOUBLE PRECISION D( * ), E( * )  COMPLEX*16 A( LDA, * ), TAU( * )

PURPOSEZHETD2 reduces a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity transformation: Q' * A * Q = T.

ARGUMENTSUPLO (input) CHARACTER*1  Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER  The order of the matrix A. N >= 0. A (input/output) COMPLEX*16 array, dimension (LDA,N)  On entry, the Hermitian matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if UPLO = 'U', the diagonal and first superdiagonal of A are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors; if UPLO = 'L', the diagonal and first subdiagonal of A are over- written by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). D (output) DOUBLE PRECISION array, dimension (N)  The diagonal elements of the tridiagonal matrix T: D(i) = A(i,i). E (output) DOUBLE PRECISION array, dimension (N-1)  The off-diagonal elements of the tridiagonal matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. TAU (output) COMPLEX*16 array, dimension (N-1)  The scalar factors of the elementary reflectors (see Further Details). INFO (output) INTEGER  = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.

FURTHER DETAILSIf UPLO = 'U', the matrix Q is represented as a product of elementary reflectors

   Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form

   H(i) = I - tau * v * v'
where tau is a complex scalar, and v is a complex vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors

   Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form

   H(i) = I - tau * v * v'
where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), and tau in TAU(i).
The contents of A on exit are illustrated by the following examples with n = 5:
if UPLO = 'U': if UPLO = 'L':

  ( d e v2 v3 v4 ) ( d )
  ( d e v3 v4 ) ( e d )
  ( d e v4 ) ( v1 e d )
  ( d e ) ( v1 v2 e d )
  ( d ) ( v1 v2 v3 e d ) where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i).
0
Johanes Gumabo
Data Size   :   10,965 byte
man-zhetd2.lBuild   :   2024-12-29, 07:25   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   3 / 257,162
Visitor ID   :     :  
Visitor IP   :   18.222.161.245   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.