ZLAED0 - Online Linux Manual PageSection : 1
Updated : November 2008
Source : LAPACK routine (version 3.2)
Note : LAPACK routine (version 3.2)

NAMEZLAED0 - the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix

SYNOPSISSUBROUTINE ZLAED0(  QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, RWORK, IWORK, INFO )  INTEGER INFO, LDQ, LDQS, N, QSIZ  INTEGER IWORK( * )  DOUBLE PRECISION D( * ), E( * ), RWORK( * )  COMPLEX*16 Q( LDQ, * ), QSTORE( LDQS, * )

PURPOSEUsing the divide and conquer method, ZLAED0 computes all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix.

ARGUMENTSQSIZ (input) INTEGER  The dimension of the unitary matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. N (input) INTEGER  The dimension of the symmetric tridiagonal matrix. N >= 0. D (input/output) DOUBLE PRECISION array, dimension (N)  On entry, the diagonal elements of the tridiagonal matrix. On exit, the eigenvalues in ascending order. E (input/output) DOUBLE PRECISION array, dimension (N-1)  On entry, the off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. Q (input/output) COMPLEX*16 array, dimension (LDQ,N)  On entry, Q must contain an QSIZ x N matrix whose columns unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix. LDQ (input) INTEGER  The leading dimension of the array Q. LDQ >= max(1,N). IWORK (workspace) INTEGER array,  the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N ( lg( N ) = smallest integer k such that 2^k >= N ) RWORK (workspace) DOUBLE PRECISION array,  dimension (1 + 3*N + 2*N*lg N + 3*N**2) ( lg( N ) = smallest integer k such that 2^k >= N ) QSTORE (workspace) COMPLEX*16 array, dimension (LDQS, N) Used to store parts of the eigenvector matrix when the updating matrix multiplies take place. LDQS (input) INTEGER  The leading dimension of the array QSTORE. LDQS >= max(1,N). INFO (output) INTEGER  = 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1).
0
Johanes Gumabo
Data Size   :   8,739 byte
man-zlaed0.lBuild   :   2024-12-05, 20:55   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   4 / 173,856
Visitor ID   :     :  
Visitor IP   :   3.144.105.101   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.