ZLASR - Online Linux Manual Page

Section : 1
Updated : November 2008
Source : LAPACK auxiliary routine (version 3.2)
Note : LAPACK auxiliary routine (version 3.2)

NAMEZLASR - applies a sequence of real plane rotations to a complex matrix A, from either the left or the right

SYNOPSISSUBROUTINE ZLASR(  SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )  CHARACTER DIRECT, PIVOT, SIDE  INTEGER LDA, M, N  DOUBLE PRECISION C( * ), S( * )  COMPLEX*16 A( LDA, * )

PURPOSEZLASR applies a sequence of real plane rotations to a complex matrix A, from either the left or the right. When SIDE = 'L', the transformation takes the form

   A := P*A
and when SIDE = 'R', the transformation takes the form

   A := A*P**T
where P is an orthogonal matrix consisting of a sequence of z plane rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', and P**T is the transpose of P.

When DIRECT = 'F' (Forward sequence), then


   P = P(z-1) * ... * P(2) * P(1)

and when DIRECT = 'B' (Backward sequence), then


   P = P(1) * P(2) * ... * P(z-1)

where P(k) is a plane rotation matrix defined by the 2-by-2 rotation

   R(k) = ( c(k) s(k) )

        = ( -s(k) c(k) ).

When PIVOT = 'V' (Variable pivot), the rotation is performed for the plane (k,k+1), i.e., P(k) has the form


   P(k) = ( 1 )
          ( ... )
          ( 1 )
          ( c(k) s(k) )
          ( -s(k) c(k) )
          ( 1 )
          ( ... )
          ( 1 )
where R(k) appears as a rank-2 modification to the identity matrix in rows and columns k and k+1.

When PIVOT = 'T' (Top pivot), the rotation is performed for the plane (1,k+1), so P(k) has the form


   P(k) = ( c(k) s(k) )
          ( 1 )
          ( ... )
          ( 1 )
          ( -s(k) c(k) )
          ( 1 )
          ( ... )
          ( 1 )
where R(k) appears in rows and columns 1 and k+1.

Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is performed for the plane (k,z), giving P(k) the form


   P(k) = ( 1 )
          ( ... )
          ( 1 )
          ( c(k) s(k) )
          ( 1 )
          ( ... )
          ( 1 )
          ( -s(k) c(k) )
where R(k) appears in rows and columns k and z. The rotations are performed without ever forming P(k) explicitly.

ARGUMENTSSIDE (input) CHARACTER*1  Specifies whether the plane rotation matrix P is applied to A on the left or the right. = 'L': Left, compute A := P*A
= 'R': Right, compute A:= A*P**T
PIVOT (input) CHARACTER*1  Specifies the plane for which P(k) is a plane rotation matrix. = 'V': Variable pivot, the plane (k,k+1)
= 'T': Top pivot, the plane (1,k+1)
= 'B': Bottom pivot, the plane (k,z)
DIRECT (input) CHARACTER*1  Specifies whether P is a forward or backward sequence of plane rotations. = 'F': Forward, P = P(z-1)*...*P(2)*P(1)
= 'B': Backward, P = P(1)*P(2)*...*P(z-1)
M (input) INTEGER  The number of rows of the matrix A. If m <= 1, an immediate return is effected. N (input) INTEGER  The number of columns of the matrix A. If n <= 1, an immediate return is effected. C (input) DOUBLE PRECISION array, dimension  (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' The cosines c(k) of the plane rotations. S (input) DOUBLE PRECISION array, dimension  (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' The sines s(k) of the plane rotations. The 2-by-2 plane rotation part of the matrix P(k), R(k), has the form R(k) = ( c(k) s(k) ) ( -s(k) c(k) ). A (input/output) COMPLEX*16 array, dimension (LDA,N)  The M-by-N matrix A. On exit, A is overwritten by P*A if SIDE = 'R' or by A*P**T if SIDE = 'L'. LDA (input) INTEGER  The leading dimension of the array A. LDA >= max(1,M).
0
Johanes Gumabo
Data Size   :   16,819 byte
man-zlasr.lBuild   :   2025-03-22, 13:26   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   2 / 1,209,486
Visitor ID   :     :  
Visitor IP   :   18.222.112.142   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36


Very long time ago, I have the best tutor, Wenzel Svojanovsky. If someone knows the email address of Wenzel Svojanovsky, please send an email to johanesgumabo@gmail.com.
Help me, linux0001.com will expire on July 16, 2025. I have no money to renew it. View detail

If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.