ZLATRZ - Online Linux Manual Page

Section : 1
Updated : November 2008
Source : LAPACK routine (version 3.2)
Note : LAPACK routine (version 3.2)

NAMEZLATRZ - factors the M-by-(M+L) complex upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means of unitary transformations, where Z is an (M+L)-by-(M+L) unitary matrix and, R and A1 are M-by-M upper triangular matrices

SYNOPSISSUBROUTINE ZLATRZ(  M, N, L, A, LDA, TAU, WORK )  INTEGER L, LDA, M, N  COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )

PURPOSEZLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means of unitary transformations, where Z is an (M+L)-by-(M+L) unitary matrix and, R and A1 are M-by-M upper triangular matrices.

ARGUMENTSM (input) INTEGER  The number of rows of the matrix A. M >= 0. N (input) INTEGER  The number of columns of the matrix A. N >= 0. L (input) INTEGER  The number of columns of the matrix A containing the meaningful part of the Householder vectors. N-M >= L >= 0. A (input/output) COMPLEX*16 array, dimension (LDA,N)  On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements N-L+1 to N of the first M rows of A, with the array TAU, represent the unitary matrix Z as a product of M elementary reflectors. LDA (input) INTEGER  The leading dimension of the array A. LDA >= max(1,M). TAU (output) COMPLEX*16 array, dimension (M)  The scalar factors of the elementary reflectors. WORK (workspace) COMPLEX*16 array, dimension (M)  

FURTHER DETAILSBased on contributions by

  A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form

   Z( k ) = ( I 0 ),

            ( 0 T( k ) )
where

   T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
                                               ( 0 )
                                               ( z( k ) ) tau is a scalar and z( k ) is an l element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of A2. The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A2, such that the elements of z( k ) are in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A1.
Z is given by

   Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
0
Johanes Gumabo
Data Size   :   10,065 byte
man-zlatrz.lBuild   :   2025-03-22, 13:26   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   3 / 1,209,682
Visitor ID   :     :  
Visitor IP   :   18.222.109.133   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36


Very long time ago, I have the best tutor, Wenzel Svojanovsky. If someone knows the email address of Wenzel Svojanovsky, please send an email to johanesgumabo@gmail.com.
Help me, linux0001.com will expire on July 16, 2025. I have no money to renew it. View detail

If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.