zpteqr.f - Online Linux Manual Page

Section : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK

NAMEzpteqr.f

SYNOPSIS

Functions/Subroutinessubroutine zpteqr (COMPZ, N, D, E, Z, LDZ, WORK, INFO)
ZPTEQR

Function/Subroutine Documentation

subroutine zpteqr (character COMPZ, integer N, double precision, dimension( * ) D, double precision, dimension( * ) E, complex*16, dimension( ldz, * ) Z, integer LDZ, double precision, dimension( * ) WORK, integer INFO)ZPTEQR Purpose: ZPTEQR computes all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by first factoring the matrix using DPTTRF and then calling ZBDSQR to compute the singular values of the bidiagonal factor. This routine computes the eigenvalues of the positive definite tridiagonal matrix to high relative accuracy. This means that if the eigenvalues range over many orders of magnitude in size, then the small eigenvalues and corresponding eigenvectors will be computed more accurately than, for example, with the standard QR method. The eigenvectors of a full or band positive definite Hermitian matrix can also be found if ZHETRD, ZHPTRD, or ZHBTRD has been used to reduce this matrix to tridiagonal form. (The reduction to tridiagonal form, however, may preclude the possibility of obtaining high relative accuracy in the small eigenvalues of the original matrix, if these eigenvalues range over many orders of magnitude.)Parameters: COMPZ COMPZ is CHARACTER*1 = 'N': Compute eigenvalues only. = 'V': Compute eigenvectors of original Hermitian matrix also. Array Z contains the unitary matrix used to reduce the original matrix to tridiagonal form. = 'I': Compute eigenvectors of tridiagonal matrix also.
N
N is INTEGER The order of the matrix. N >= 0.
D
D is DOUBLE PRECISION array, dimension (N) On entry, the n diagonal elements of the tridiagonal matrix. On normal exit, D contains the eigenvalues, in descending order.
E
E is DOUBLE PRECISION array, dimension (N-1) On entry, the (n-1) subdiagonal elements of the tridiagonal matrix. On exit, E has been destroyed.
Z
Z is COMPLEX*16 array, dimension (LDZ, N) On entry, if COMPZ = 'V', the unitary matrix used in the reduction to tridiagonal form. On exit, if COMPZ = 'V', the orthonormal eigenvectors of the original Hermitian matrix; if COMPZ = 'I', the orthonormal eigenvectors of the tridiagonal matrix. If INFO > 0 on exit, Z contains the eigenvectors associated with only the stored eigenvalues. If COMPZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if COMPZ = 'V' or 'I', LDZ >= max(1,N).
WORK
WORK is DOUBLE PRECISION array, dimension (4*N)
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, and i is: <= N the Cholesky factorization of the matrix could not be performed because the i-th principal minor was not positive definite. > N the SVD algorithm failed to converge; if INFO = N+i, i off-diagonal elements of the bidiagonal factor did not converge to zero.Author: Univ​. of Tennessee Univ​. of California Berkeley Univ​. of Colorado Denver NAG Ltd​. Date: December 2016 Definition at line 147 of file zpteqr​.f​.

AuthorGenerated automatically by Doxygen for LAPACK from the source code​.
0
Johanes Gumabo
Data Size   :   13,675 byte
man-zpteqr.f.3Build   :   2025-03-22, 13:26   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   1 / 1,209,638
Visitor ID   :     :  
Visitor IP   :   3.137.203.53   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   37.751000 x -97.822000   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :     :  
Provider Province   :   ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36


Very long time ago, I have the best tutor, Wenzel Svojanovsky. If someone knows the email address of Wenzel Svojanovsky, please send an email to johanesgumabo@gmail.com.
Help me, linux0001.com will expire on July 16, 2025. I have no money to renew it. View detail

If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.