ZPTEQR - Online Linux Manual Page

Section : 1
Updated : November 2008
Source : LAPACK routine (version 3.2)
Note : LAPACK routine (version 3.2)

NAMEZPTEQR - computes all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by first factoring the matrix using DPTTRF and then calling ZBDSQR to compute the singular values of the bidiagonal factor

SYNOPSISSUBROUTINE ZPTEQR(  COMPZ, N, D, E, Z, LDZ, WORK, INFO )  CHARACTER COMPZ  INTEGER INFO, LDZ, N  DOUBLE PRECISION D( * ), E( * ), WORK( * )  COMPLEX*16 Z( LDZ, * )

PURPOSEZPTEQR computes all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by first factoring the matrix using DPTTRF and then calling ZBDSQR to compute the singular values of the bidiagonal factor. This routine computes the eigenvalues of the positive definite tridiagonal matrix to high relative accuracy. This means that if the eigenvalues range over many orders of magnitude in size, then the small eigenvalues and corresponding eigenvectors will be computed more accurately than, for example, with the standard QR method. The eigenvectors of a full or band positive definite Hermitian matrix can also be found if ZHETRD, ZHPTRD, or ZHBTRD has been used to reduce this matrix to tridiagonal form. (The reduction to tridiagonal form, however, may preclude the possibility of obtaining high relative accuracy in the small eigenvalues of the original matrix, if these eigenvalues range over many orders of magnitude.)

ARGUMENTSCOMPZ (input) CHARACTER*1  = 'N': Compute eigenvalues only.
= 'V': Compute eigenvectors of original Hermitian matrix also. Array Z contains the unitary matrix used to reduce the original matrix to tridiagonal form. = 'I': Compute eigenvectors of tridiagonal matrix also.
N (input) INTEGER  The order of the matrix. N >= 0. D (input/output) DOUBLE PRECISION array, dimension (N)  On entry, the n diagonal elements of the tridiagonal matrix. On normal exit, D contains the eigenvalues, in descending order. E (input/output) DOUBLE PRECISION array, dimension (N-1)  On entry, the (n-1) subdiagonal elements of the tridiagonal matrix. On exit, E has been destroyed. Z (input/output) COMPLEX*16 array, dimension (LDZ, N)  On entry, if COMPZ = 'V', the unitary matrix used in the reduction to tridiagonal form. On exit, if COMPZ = 'V', the orthonormal eigenvectors of the original Hermitian matrix; if COMPZ = 'I', the orthonormal eigenvectors of the tridiagonal matrix. If INFO > 0 on exit, Z contains the eigenvectors associated with only the stored eigenvalues. If COMPZ = 'N', then Z is not referenced. LDZ (input) INTEGER  The leading dimension of the array Z. LDZ >= 1, and if COMPZ = 'V' or 'I', LDZ >= max(1,N). WORK (workspace) DOUBLE PRECISION array, dimension (4*N)  INFO (output) INTEGER  = 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is: <= N the Cholesky factorization of the matrix could not be performed because the i-th principal minor was not positive definite. > N the SVD algorithm failed to converge; if INFO = N+i, i off-diagonal elements of the bidiagonal factor did not converge to zero.
0
Johanes Gumabo
Data Size   :   8,720 byte
man-zpteqr.lBuild   :   2025-03-22, 13:26   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   1 / 1,209,668
Visitor ID   :     :  
Visitor IP   :   3.144.231.11   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36


Very long time ago, I have the best tutor, Wenzel Svojanovsky. If someone knows the email address of Wenzel Svojanovsky, please send an email to johanesgumabo@gmail.com.
Help me, linux0001.com will expire on July 16, 2025. I have no money to renew it. View detail

If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.