zsyequb.f - Online Linux Manual Page
Section : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEzsyequb.f
SYNOPSIS
Functions/Subroutinessubroutine zsyequb (UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO)
ZSYEQUB
Function/Subroutine Documentation
subroutine zsyequb (character UPLO, integer N, complex*16, dimension( lda, * ) A, integer LDA, double precision, dimension( * ) S, double precision SCOND, double precision AMAX, complex*16, dimension( * ) WORK, integer INFO)ZSYEQUB Purpose: ZSYEQUB computes row and column scalings intended to equilibrate a
symmetric matrix A (with respect to the Euclidean norm) and reduce
its condition number. The scale factors S are computed by the BIN
algorithm (see references) so that the scaled matrix B with elements
B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
the smallest possible condition number over all possible diagonal
scalings.Parameters: UPLO UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N N is INTEGER
The order of the matrix A. N >= 0.
A A is COMPLEX*16 array, dimension (LDA,N)
The N-by-N symmetric matrix whose scaling factors are to be
computed.
LDA LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
S S is DOUBLE PRECISION array, dimension (N)
If INFO = 0, S contains the scale factors for A.
SCOND SCOND is DOUBLE PRECISION
If INFO = 0, S contains the ratio of the smallest S(i) to
the largest S(i). If SCOND >= 0.1 and AMAX is neither too
large nor too small, it is not worth scaling by S.
AMAX AMAX is DOUBLE PRECISION
Largest absolute value of any matrix element. If AMAX is
very close to overflow or very close to underflow, the
matrix should be scaled.
WORK WORK is COMPLEX*16 array, dimension (2*N)
INFO INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element is nonpositive.Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2017 References: Livne, O.E. and Golub, G.H., 'Scaling by Binormalization',
Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
DOI 10.1023/B:NUMA.0000016606.32820.69
Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679 Definition at line 134 of file zsyequb.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 13,269 byte
man-zsyequb.3Build : 2025-03-22, 13:26 :
Visitor Screen : x
Visitor Counter ( page / site ) : 1 / 1,209,636
Visitor ID : :
Visitor IP : 3.137.203.53 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 37.751000 x -97.822000 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : :
Provider Province : , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.