ZTBTRS - Online Linux Manual Page
Section : 1
Updated : November 2008
Source : LAPACK routine (version 3.2)
Note : LAPACK routine (version 3.2)
NAMEZTBTRS - solves a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B,
SYNOPSISSUBROUTINE ZTBTRS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, INFO ) CHARACTER DIAG, TRANS, UPLO INTEGER INFO, KD, LDAB, LDB, N, NRHS COMPLEX*16 AB( LDAB, * ), B( LDB, * )
PURPOSEZTBTRS solves a triangular system of the form where A is a triangular band matrix of order N, and B is an N-by-NRHS matrix. A check is made to verify that A is nonsingular.
ARGUMENTSUPLO (input) CHARACTER*1 = 'U': A is upper triangular;
= 'L': A is lower triangular. TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose) DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular. N (input) INTEGER The order of the matrix A. N >= 0. KD (input) INTEGER The number of superdiagonals or subdiagonals of the triangular band matrix A. KD >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AB (input) COMPLEX*16 array, dimension (LDAB,N) The upper or lower triangular band matrix A, stored in the first kd+1 rows of AB. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). If DIAG = 'U', the diagonal elements of A are not referenced and are assumed to be 1. LDAB (input) INTEGER The leading dimension of the array AB. LDAB >= KD+1. B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, if INFO = 0, the solution matrix X. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO (output) INTEGER = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the i-th diagonal element of A is zero, indicating that the matrix is singular and the solutions X have not been computed. 0
Johanes Gumabo
Data Size : 8,470 byte
man-ztbtrs.lBuild : 2025-03-22, 13:26 :
Visitor Screen : x
Visitor Counter ( page / site ) : 2 / 1,209,803
Visitor ID : :
Visitor IP : 18.216.196.208 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.