ztzrzf.f - Online Linux Manual Page
Section : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEztzrzf.f
SYNOPSIS
Functions/Subroutinessubroutine ztzrzf (M, N, A, LDA, TAU, WORK, LWORK, INFO)
ZTZRZF
Function/Subroutine Documentation
subroutine ztzrzf (integer M, integer N, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( * ) TAU, complex*16, dimension( * ) WORK, integer LWORK, integer INFO)ZTZRZF Purpose: ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
to upper triangular form by means of unitary transformations.
The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N unitary matrix and R is an M-by-M upper
triangular matrix.Parameters: M M is INTEGER
The number of rows of the matrix A. M >= 0.
N N is INTEGER
The number of columns of the matrix A. N >= M.
A A is COMPLEX*16 array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements M+1 to
N of the first M rows of A, with the array TAU, represent the
unitary matrix Z as a product of M elementary reflectors.
LDA LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU TAU is COMPLEX*16 array, dimension (M)
The scalar factors of the elementary reflectors.
WORK WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal valueAuthor: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: April 2012 Contributors: A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA Further Details: The N-by-N matrix Z can be computed by
Z = Z(1)*Z(2)* ... *Z(M)
where each N-by-N Z(k) is given by
Z(k) = I - tau(k)*v(k)*v(k)**H
with v(k) is the kth row vector of the M-by-N matrix
V = ( I A(:,M+1:N) )
I is the M-by-M identity matrix, A(:,M+1:N)
is the output stored in A on exit from DTZRZF,
and tau(k) is the kth element of the array TAU.Definition at line 153 of file ztzrzf.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 14,217 byte
man-ztzrzf.f.3Build : 2025-03-22, 13:26 :
Visitor Screen : x
Visitor Counter ( page / site ) : 1 / 1,209,797
Visitor ID : :
Visitor IP : 18.216.196.208 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.