ZTZRZF - Online Linux Manual Page

Section : 1
Updated : November 2008
Source : LAPACK routine (version 3.2)
Note : LAPACK routine (version 3.2)

NAMEZTZRZF - reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A to upper triangular form by means of unitary transformations

SYNOPSISSUBROUTINE ZTZRZF(  M, N, A, LDA, TAU, WORK, LWORK, INFO )  INTEGER INFO, LDA, LWORK, M, N  COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )

PURPOSEZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A to upper triangular form by means of unitary transformations. The upper trapezoidal matrix A is factored as

   A = ( R 0 ) * Z,
where Z is an N-by-N unitary matrix and R is an M-by-M upper triangular matrix.

ARGUMENTSM (input) INTEGER  The number of rows of the matrix A. M >= 0. N (input) INTEGER  The number of columns of the matrix A. N >= M. A (input/output) COMPLEX*16 array, dimension (LDA,N)  On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements M+1 to N of the first M rows of A, with the array TAU, represent the unitary matrix Z as a product of M elementary reflectors. LDA (input) INTEGER  The leading dimension of the array A. LDA >= max(1,M). TAU (output) COMPLEX*16 array, dimension (M)  The scalar factors of the elementary reflectors. WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))  On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER  The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER  = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

FURTHER DETAILSBased on contributions by

  A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form

   Z( k ) = ( I 0 ),

            ( 0 T( k ) )
where

   T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
                                               ( 0 )
                                               ( z( k ) ) tau is a scalar and z( k ) is an ( n - m ) element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of X.
The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A, such that the elements of z( k ) are in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A.
Z is given by

   Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
0
Johanes Gumabo
Data Size   :   10,318 byte
man-ztzrzf.lBuild   :   2025-03-22, 13:26   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   1 / 1,209,886
Visitor ID   :     :  
Visitor IP   :   3.144.229.52   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36


Very long time ago, I have the best tutor, Wenzel Svojanovsky. If someone knows the email address of Wenzel Svojanovsky, please send an email to johanesgumabo@gmail.com.
Help me, linux0001.com will expire on July 16, 2025. I have no money to renew it. View detail

If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.