zunbdb.f - Online Linux Manual Page

Section : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK

NAMEzunbdb.f

SYNOPSIS

Functions/Subroutinessubroutine zunbdb (TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22, THETA, PHI, TAUP1, TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO)
ZUNBDB

Function/Subroutine Documentation

subroutine zunbdb (character TRANS, character SIGNS, integer M, integer P, integer Q, complex*16, dimension( ldx11, * ) X11, integer LDX11, complex*16, dimension( ldx12, * ) X12, integer LDX12, complex*16, dimension( ldx21, * ) X21, integer LDX21, complex*16, dimension( ldx22, * ) X22, integer LDX22, double precision, dimension( * ) THETA, double precision, dimension( * ) PHI, complex*16, dimension( * ) TAUP1, complex*16, dimension( * ) TAUP2, complex*16, dimension( * ) TAUQ1, complex*16, dimension( * ) TAUQ2, complex*16, dimension( * ) WORK, integer LWORK, integer INFO)ZUNBDB Purpose: ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M partitioned unitary matrix X: [ B11 | B12 0 0 ] [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**H X = [-----------] = [---------] [----------------] [---------] . [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ] [ 0 | 0 0 I ] X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is not the case, then X must be transposed and/or permuted. This can be done in constant time using the TRANS and SIGNS options. See ZUNCSD for details.) The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by- (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are represented implicitly by Householder vectors. B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented implicitly by angles THETA, PHI.Parameters: TRANS TRANS is CHARACTER = 'T': X, U1, U2, V1T, and V2T are stored in row-major order; otherwise: X, U1, U2, V1T, and V2T are stored in column- major order.
SIGNS
SIGNS is CHARACTER = 'O': The lower-left block is made nonpositive (the "other" convention); otherwise: The upper-right block is made nonpositive (the "default" convention).
M
M is INTEGER The number of rows and columns in X.
P
P is INTEGER The number of rows in X11 and X12. 0 <= P <= M.
Q
Q is INTEGER The number of columns in X11 and X21. 0 <= Q <= MIN(P,M-P,M-Q).
X11
X11 is COMPLEX*16 array, dimension (LDX11,Q) On entry, the top-left block of the unitary matrix to be reduced. On exit, the form depends on TRANS: If TRANS = 'N', then the columns of tril(X11) specify reflectors for P1, the rows of triu(X11,1) specify reflectors for Q1; else TRANS = 'T', and the rows of triu(X11) specify reflectors for P1, the columns of tril(X11,-1) specify reflectors for Q1.
LDX11
LDX11 is INTEGER The leading dimension of X11. If TRANS = 'N', then LDX11 >= P; else LDX11 >= Q.
X12
X12 is COMPLEX*16 array, dimension (LDX12,M-Q) On entry, the top-right block of the unitary matrix to be reduced. On exit, the form depends on TRANS: If TRANS = 'N', then the rows of triu(X12) specify the first P reflectors for Q2; else TRANS = 'T', and the columns of tril(X12) specify the first P reflectors for Q2.
LDX12
LDX12 is INTEGER The leading dimension of X12. If TRANS = 'N', then LDX12 >= P; else LDX11 >= M-Q.
X21
X21 is COMPLEX*16 array, dimension (LDX21,Q) On entry, the bottom-left block of the unitary matrix to be reduced. On exit, the form depends on TRANS: If TRANS = 'N', then the columns of tril(X21) specify reflectors for P2; else TRANS = 'T', and the rows of triu(X21) specify reflectors for P2.
LDX21
LDX21 is INTEGER The leading dimension of X21. If TRANS = 'N', then LDX21 >= M-P; else LDX21 >= Q.
X22
X22 is COMPLEX*16 array, dimension (LDX22,M-Q) On entry, the bottom-right block of the unitary matrix to be reduced. On exit, the form depends on TRANS: If TRANS = 'N', then the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last M-P-Q reflectors for Q2, else TRANS = 'T', and the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last M-P-Q reflectors for P2.
LDX22
LDX22 is INTEGER The leading dimension of X22. If TRANS = 'N', then LDX22 >= M-P; else LDX22 >= M-Q.
THETA
THETA is DOUBLE PRECISION array, dimension (Q) The entries of the bidiagonal blocks B11, B12, B21, B22 can be computed from the angles THETA and PHI. See Further Details.
PHI
PHI is DOUBLE PRECISION array, dimension (Q-1) The entries of the bidiagonal blocks B11, B12, B21, B22 can be computed from the angles THETA and PHI. See Further Details.
TAUP1
TAUP1 is COMPLEX*16 array, dimension (P) The scalar factors of the elementary reflectors that define P1.
TAUP2
TAUP2 is COMPLEX*16 array, dimension (M-P) The scalar factors of the elementary reflectors that define P2.
TAUQ1
TAUQ1 is COMPLEX*16 array, dimension (Q) The scalar factors of the elementary reflectors that define Q1.
TAUQ2
TAUQ2 is COMPLEX*16 array, dimension (M-Q) The scalar factors of the elementary reflectors that define Q2.
WORK
WORK is COMPLEX*16 array, dimension (LWORK)
LWORK
LWORK is INTEGER The dimension of the array WORK. LWORK >= M-Q. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.Author: Univ​. of Tennessee Univ​. of California Berkeley Univ​. of Colorado Denver NAG Ltd​. Date: December 2016 Further Details: The bidiagonal blocks B11, B12, B21, and B22 are represented implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are lower bidiagonal. Every entry in each bidiagonal band is a product of a sine or cosine of a THETA with a sine or cosine of a PHI. See [1] or ZUNCSD for details. P1, P2, Q1, and Q2 are represented as products of elementary reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2 using ZUNGQR and ZUNGLQ.References: [1] Brian D​. Sutton​. Computing the complete CS decomposition​. Numer​. Algorithms, 50(1):33-65, 2009​. Definition at line 289 of file zunbdb​.f​.

AuthorGenerated automatically by Doxygen for LAPACK from the source code​.
0
Johanes Gumabo
Data Size   :   27,183 byte
man-zunbdb.3Build   :   2025-03-22, 13:26   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   1 / 1,209,855
Visitor ID   :     :  
Visitor IP   :   3.145.33.99   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36


Very long time ago, I have the best tutor, Wenzel Svojanovsky. If someone knows the email address of Wenzel Svojanovsky, please send an email to johanesgumabo@gmail.com.
Help me, linux0001.com will expire on July 16, 2025. I have no money to renew it. View detail

If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.