zunbdb.f - Online Linux Manual Page
Section : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEzunbdb.f
SYNOPSIS
Functions/Subroutinessubroutine zunbdb (TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22, THETA, PHI, TAUP1, TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO)
ZUNBDB
Function/Subroutine Documentation
subroutine zunbdb (character TRANS, character SIGNS, integer M, integer P, integer Q, complex*16, dimension( ldx11, * ) X11, integer LDX11, complex*16, dimension( ldx12, * ) X12, integer LDX12, complex*16, dimension( ldx21, * ) X21, integer LDX21, complex*16, dimension( ldx22, * ) X22, integer LDX22, double precision, dimension( * ) THETA, double precision, dimension( * ) PHI, complex*16, dimension( * ) TAUP1, complex*16, dimension( * ) TAUP2, complex*16, dimension( * ) TAUQ1, complex*16, dimension( * ) TAUQ2, complex*16, dimension( * ) WORK, integer LWORK, integer INFO)ZUNBDB Purpose: ZUNBDB simultaneously bidiagonalizes the blocks of an M-by-M
partitioned unitary matrix X:
[ B11 | B12 0 0 ]
[ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**H
X = [-----------] = [---------] [----------------] [---------] .
[ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ]
[ 0 | 0 0 I ]
X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
not the case, then X must be transposed and/or permuted. This can be
done in constant time using the TRANS and SIGNS options. See ZUNCSD
for details.)
The unitary matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
represented implicitly by Householder vectors.
B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
implicitly by angles THETA, PHI.Parameters: TRANS TRANS is CHARACTER
= 'T': X, U1, U2, V1T, and V2T are stored in row-major
order;
otherwise: X, U1, U2, V1T, and V2T are stored in column-
major order.
SIGNS SIGNS is CHARACTER
= 'O': The lower-left block is made nonpositive (the
"other" convention);
otherwise: The upper-right block is made nonpositive (the
"default" convention).
M M is INTEGER
The number of rows and columns in X.
P P is INTEGER
The number of rows in X11 and X12. 0 <= P <= M.
Q Q is INTEGER
The number of columns in X11 and X21. 0 <= Q <=
MIN(P,M-P,M-Q).
X11 X11 is COMPLEX*16 array, dimension (LDX11,Q)
On entry, the top-left block of the unitary matrix to be
reduced. On exit, the form depends on TRANS:
If TRANS = 'N', then
the columns of tril(X11) specify reflectors for P1,
the rows of triu(X11,1) specify reflectors for Q1;
else TRANS = 'T', and
the rows of triu(X11) specify reflectors for P1,
the columns of tril(X11,-1) specify reflectors for Q1.
LDX11 LDX11 is INTEGER
The leading dimension of X11. If TRANS = 'N', then LDX11 >=
P; else LDX11 >= Q.
X12 X12 is COMPLEX*16 array, dimension (LDX12,M-Q)
On entry, the top-right block of the unitary matrix to
be reduced. On exit, the form depends on TRANS:
If TRANS = 'N', then
the rows of triu(X12) specify the first P reflectors for
Q2;
else TRANS = 'T', and
the columns of tril(X12) specify the first P reflectors
for Q2.
LDX12 LDX12 is INTEGER
The leading dimension of X12. If TRANS = 'N', then LDX12 >=
P; else LDX11 >= M-Q.
X21 X21 is COMPLEX*16 array, dimension (LDX21,Q)
On entry, the bottom-left block of the unitary matrix to
be reduced. On exit, the form depends on TRANS:
If TRANS = 'N', then
the columns of tril(X21) specify reflectors for P2;
else TRANS = 'T', and
the rows of triu(X21) specify reflectors for P2.
LDX21 LDX21 is INTEGER
The leading dimension of X21. If TRANS = 'N', then LDX21 >=
M-P; else LDX21 >= Q.
X22 X22 is COMPLEX*16 array, dimension (LDX22,M-Q)
On entry, the bottom-right block of the unitary matrix to
be reduced. On exit, the form depends on TRANS:
If TRANS = 'N', then
the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
M-P-Q reflectors for Q2,
else TRANS = 'T', and
the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
M-P-Q reflectors for P2.
LDX22 LDX22 is INTEGER
The leading dimension of X22. If TRANS = 'N', then LDX22 >=
M-P; else LDX22 >= M-Q.
THETA THETA is DOUBLE PRECISION array, dimension (Q)
The entries of the bidiagonal blocks B11, B12, B21, B22 can
be computed from the angles THETA and PHI. See Further
Details.
PHI PHI is DOUBLE PRECISION array, dimension (Q-1)
The entries of the bidiagonal blocks B11, B12, B21, B22 can
be computed from the angles THETA and PHI. See Further
Details.
TAUP1 TAUP1 is COMPLEX*16 array, dimension (P)
The scalar factors of the elementary reflectors that define
P1.
TAUP2 TAUP2 is COMPLEX*16 array, dimension (M-P)
The scalar factors of the elementary reflectors that define
P2.
TAUQ1 TAUQ1 is COMPLEX*16 array, dimension (Q)
The scalar factors of the elementary reflectors that define
Q1.
TAUQ2 TAUQ2 is COMPLEX*16 array, dimension (M-Q)
The scalar factors of the elementary reflectors that define
Q2.
WORK WORK is COMPLEX*16 array, dimension (LWORK)
LWORK LWORK is INTEGER
The dimension of the array WORK. LWORK >= M-Q.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: December 2016 Further Details: The bidiagonal blocks B11, B12, B21, and B22 are represented
implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
lower bidiagonal. Every entry in each bidiagonal band is a product
of a sine or cosine of a THETA with a sine or cosine of a PHI. See
[1] or ZUNCSD for details.
P1, P2, Q1, and Q2 are represented as products of elementary
reflectors. See ZUNCSD for details on generating P1, P2, Q1, and Q2
using ZUNGQR and ZUNGLQ.References: [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009. Definition at line 289 of file zunbdb.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 27,183 byte
man-zunbdb.3Build : 2025-03-22, 13:26 :
Visitor Screen : x
Visitor Counter ( page / site ) : 1 / 1,209,855
Visitor ID : :
Visitor IP : 3.145.33.99 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 25.03.22
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.