zuncsd2by1.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK

NAMEzuncsd2by1.f

SYNOPSIS

Functions/Subroutinessubroutine zuncsd2by1 (JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11, X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO)
ZUNCSD2BY1

Function/Subroutine Documentation

subroutine zuncsd2by1 (character JOBU1, character JOBU2, character JOBV1T, integer M, integer P, integer Q, complex*16, dimension(ldx11,*) X11, integer LDX11, complex*16, dimension(ldx21,*) X21, integer LDX21, double precision, dimension(*) THETA, complex*16, dimension(ldu1,*) U1, integer LDU1, complex*16, dimension(ldu2,*) U2, integer LDU2, complex*16, dimension(ldv1t,*) V1T, integer LDV1T, complex*16, dimension(*) WORK, integer LWORK, double precision, dimension(*) RWORK, integer LRWORK, integer, dimension(*) IWORK, integer INFO)ZUNCSD2BY1 Purpose: ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with orthonormal columns that has been partitioned into a 2-by-1 block structure: [ I1 0 0 ] [ 0 C 0 ] [ X11 ] [ U1 | ] [ 0 0 0 ] X = [-----] = [---------] [----------] V1**T . [ X21 ] [ | U2 ] [ 0 0 0 ] [ 0 S 0 ] [ 0 0 I2] X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P, (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0).Parameters: JOBU1 JOBU1 is CHARACTER = 'Y': U1 is computed; otherwise: U1 is not computed.
JOBU2
JOBU2 is CHARACTER = 'Y': U2 is computed; otherwise: U2 is not computed.
JOBV1T
JOBV1T is CHARACTER = 'Y': V1T is computed; otherwise: V1T is not computed.
M
M is INTEGER The number of rows in X.
P
P is INTEGER The number of rows in X11. 0 <= P <= M.
Q
Q is INTEGER The number of columns in X11 and X21. 0 <= Q <= M.
X11
X11 is COMPLEX*16 array, dimension (LDX11,Q) On entry, part of the unitary matrix whose CSD is desired.
LDX11
LDX11 is INTEGER The leading dimension of X11. LDX11 >= MAX(1,P).
X21
X21 is COMPLEX*16 array, dimension (LDX21,Q) On entry, part of the unitary matrix whose CSD is desired.
LDX21
LDX21 is INTEGER The leading dimension of X21. LDX21 >= MAX(1,M-P).
THETA
THETA is DOUBLE PRECISION array, dimension (R), in which R = MIN(P,M-P,Q,M-Q). C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
U1
U1 is COMPLEX*16 array, dimension (P) If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
LDU1
LDU1 is INTEGER The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= MAX(1,P).
U2
U2 is COMPLEX*16 array, dimension (M-P) If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary matrix U2.
LDU2
LDU2 is INTEGER The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= MAX(1,M-P).
V1T
V1T is COMPLEX*16 array, dimension (Q) If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary matrix V1**T.
LDV1T
LDV1T is INTEGER The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= MAX(1,Q).
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the work array, and no error message related to LWORK is issued by XERBLA.
RWORK
RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence. INFO specifies the number of nonzero PHI's.
LRWORK
LRWORK is INTEGER The dimension of the array RWORK. If LRWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the RWORK array, returns this value as the first entry of the work array, and no error message related to LRWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: ZBBCSD did not converge. See the description of WORK above for details.References: [1] Brian D​. Sutton​. Computing the complete CS decomposition​. Numer​. Algorithms, 50(1):33-65, 2009​. Author: Univ​. of Tennessee Univ​. of California Berkeley Univ​. of Colorado Denver NAG Ltd​. Date: July 2012 Definition at line 256 of file zuncsd2by1​.f​.

AuthorGenerated automatically by Doxygen for LAPACK from the source code​.
0
Johanes Gumabo
Data Size   :   24,389 byte
man-zuncsd2by1.3Build   :   2024-12-29, 07:25   :  
Visitor Screen   :   x
Visitor Counter ( page / site )   :   3 / 260,417
Visitor ID   :     :  
Visitor IP   :   3.128.168.219   :  
Visitor Provider   :   AMAZON-02   :  
Provider Position ( lat x lon )   :   39.962500 x -83.006100   :   x
Provider Accuracy Radius ( km )   :   1000   :  
Provider City   :   Columbus   :  
Provider Province   :   Ohio ,   :   ,
Provider Country   :   United States   :  
Provider Continent   :   North America   :  
Visitor Recorder   :   Version   :  
Visitor Recorder   :   Library   :  
Online Linux Manual Page   :   Version   :   Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.29
Online Linux Manual Page   :   Library   :   lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page   :   Library   :   lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base   :   Version   :   Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base   :   Library   :   lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36

Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.