zunmr3.f - Online Linux Manual PageSection : 3
Updated : Tue Nov 14 2017
Source : Version 3.8.0
Note : LAPACK
NAMEzunmr3.f
SYNOPSIS
Functions/Subroutinessubroutine zunmr3 (SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK, INFO)
ZUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf (unblocked algorithm).
Function/Subroutine Documentation
subroutine zunmr3 (character SIDE, character TRANS, integer M, integer N, integer K, integer L, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( * ) TAU, complex*16, dimension( ldc, * ) C, integer LDC, complex*16, dimension( * ) WORK, integer INFO)ZUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf (unblocked algorithm). Purpose: ZUNMR3 overwrites the general complex m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q**H* C if SIDE = 'L' and TRANS = 'C', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q**H if SIDE = 'R' and TRANS = 'C',
where Q is a complex unitary matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by ZTZRZF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.Parameters: SIDE SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left
= 'R': apply Q or Q**H from the Right
TRANS TRANS is CHARACTER*1
= 'N': apply Q (No transpose)
= 'C': apply Q**H (Conjugate transpose)
M M is INTEGER
The number of rows of the matrix C. M >= 0.
N N is INTEGER
The number of columns of the matrix C. N >= 0.
K K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
L L is INTEGER
The number of columns of the matrix A containing
the meaningful part of the Householder reflectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
A A is COMPLEX*16 array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
ZTZRZF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU TAU is COMPLEX*16 array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ZTZRZF.
C C is COMPLEX*16 array, dimension (LDC,N)
On entry, the m-by-n matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
LDC LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK WORK is COMPLEX*16 array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal valueAuthor: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: December 2016 Contributors: A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA Further Details: Definition at line 180 of file zunmr3.f.
AuthorGenerated automatically by Doxygen for LAPACK from the source code. 0
Johanes Gumabo
Data Size : 17,687 byte
man-zunmr3.f.3Build : 2024-12-05, 20:55 :
Visitor Screen : x
Visitor Counter ( page / site ) : 2 / 236,892
Visitor ID : :
Visitor IP : 18.118.151.211 :
Visitor Provider : AMAZON-02 :
Provider Position ( lat x lon ) : 39.962500 x -83.006100 : x
Provider Accuracy Radius ( km ) : 1000 :
Provider City : Columbus :
Provider Province : Ohio , : ,
Provider Country : United States :
Provider Continent : North America :
Visitor Recorder : Version :
Visitor Recorder : Library :
Online Linux Manual Page : Version : Online Linux Manual Page - Fedora.40 - march=x86-64 - mtune=generic - 24.12.05
Online Linux Manual Page : Library : lib_c - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Online Linux Manual Page : Library : lib_m - 24.10.03 - march=x86-64 - mtune=generic - Fedora.40
Data Base : Version : Online Linux Manual Page Database - 24.04.13 - march=x86-64 - mtune=generic - fedora-38
Data Base : Library : lib_c - 23.02.07 - march=x86-64 - mtune=generic - fedora.36
Very long time ago, I have the best tutor, Wenzel Svojanovsky . If someone knows the email address of Wenzel Svojanovsky , please send an email to johanes_gumabo@yahoo.co.id .
If error, please print screen and send to johanes_gumabo@yahoo.co.id
Under development. Support me via PayPal.